- 一、概述
K近邻算法是对事物进行分类的机器学习算法。简单来说就是给定一组样本,对新的输入样本,在已有样本中找到与该实例最邻近的K个例子, 当这K个例子的大多属于某个类别时,就把该输入样本分类到这个类之中。
举例来说,小说有许多不同种类,暂且分成言情小说和玄幻小说,通过统计小说中的恋爱情节和打斗情节得出一组数据
当我们把该数据通过图表显示
此时,当有一部小说X的打斗情节为6,恋爱情节为2,会属于哪一类小说?(五角星代表小说X)
计算小说X的数据到样本数据的距离,设k为3,则需要找到距离最小的三个点,当某一类更多时将小说X归于该类小说。这就是通过计算距离总结k个最邻近类并按照少数服从多数原则分类的K近邻算法。
- 二、算法原理介绍
以上面数据为例,打斗情节为x,恋爱情节为y,通过欧氏距离公式