K近邻算法(Python实现)

本文介绍了K近邻算法的基本概念,通过一个言情小说与玄幻小说分类的例子阐述了算法的工作原理,并提供了Python实现及测试结果,强调了算法在实际应用中的局限性和提高准确性的方法。
摘要由CSDN通过智能技术生成
  • 一、概述

         K近邻算法是对事物进行分类的机器学习算法。简单来说就是给定一组样本,对新的输入样本,在已有样本中找到与该实例最邻近的K个例子, 当这K个例子的大多属于某个类别时,就把该输入样本分类到这个类之中。

        举例来说,小说有许多不同种类,暂且分成言情小说和玄幻小说,通过统计小说中的恋爱情节和打斗情节得出一组数据

        

 


当我们把该数据通过图表显示

此时,当有一部小说X的打斗情节为6,恋爱情节为2,会属于哪一类小说?(五角星代表小说X)


       计算小说X的数据到样本数据的距离,设k为3,则需要找到距离最小的三个点,当某一类更多时将小说X归于该类小说。这就是通过计算距离总结k个最邻近类并按照少数服从多数原则分类的K近邻算法。

  • 二、算法原理介绍

        以上面数据为例,打斗情节为x,恋爱情节为y,通过欧氏距离公式 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值