计算机视觉 图像映射

图像映射涉及单应性变换、仿射变换等方法,用于图像扭曲、配准和全景拼接。单应性变换通过4对点计算单应性矩阵,仿射变换则保持图形的平直性和平行性,常用于图像定位。阿尔法通道记录图像透明度信息。
摘要由CSDN通过智能技术生成

图像映射
   

         图像映射就是图像之间的变换,加上使用一些计算变换的方法。可以实现图像扭曲变形和图像配准,适用于全景拼接。普遍变换方法有单应性变换、仿射变换、阿尔法通道等等。图像的映射类型有:平移、旋转、仿射、透视映射、尺度变换,不同的类型对应不一样的方法。经过这些处理就可以达到自己想要实现的映射效果。

(一)原理解析


(1)单应性变换(homography)


    矩阵的一个重要作用是将空间中的点变换到另一个空间中。比较形像直观地理解的方法就是图像变换,图像变换的方法很多,单应性变换是其中一种方法,单应性变换会涉及到单应性矩阵。单应性变换的目标是通过给定的几个点(通常是4对点)来得到单应性矩阵。以下为单应性矩阵的推导过程。

  

 

        单应性矩阵 H 仅依赖尺度定义,所以,单应性矩阵具有 8 个独立自由度。通常会使第三个值为一来归一化点,即 :a 点坐标(x , y , z ) 转换成  a'  (x , y , 1)这样,点就具有唯一的图像坐标 x 和 y 。这个额外的坐标使得我们可以简单使用一个矩阵来表示表换。例如:矩阵H会将一幅图像上的一个点的坐标 a =(x,y,1)映射成另一幅图像上的点的坐标 b =(x1,y1,1),已知 a 和 b ,它们是在同一平面上。 则有下面的公式:

 ​​​​​​​​​​​​​​

 

 

 

即:

 

 

由上面的公式   1=h31x+h32y+h33 可得到:

 

 

 

然后取 V 的最后一列出来作为求解hh。因为矩阵 A 是行满秩,即只有一个自由度。具体实现需要输入两张图片,在两张图片之间找到4个点坐标,由此得到矩阵H。

对b的方程可写成一个矩阵和一个向量相乘,即

         其中         

         若令

 则可记为

        ​​​​​​​        ​​​​​​​        ​​​​​​​        ​​​​​​​        

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值