图像映射
图像映射就是图像之间的变换,加上使用一些计算变换的方法。可以实现图像扭曲变形和图像配准,适用于全景拼接。普遍变换方法有单应性变换、仿射变换、阿尔法通道等等。图像的映射类型有:平移、旋转、仿射、透视映射、尺度变换,不同的类型对应不一样的方法。经过这些处理就可以达到自己想要实现的映射效果。
(一)原理解析
(1)单应性变换(homography)
矩阵的一个重要作用是将空间中的点变换到另一个空间中。比较形像直观地理解的方法就是图像变换,图像变换的方法很多,单应性变换是其中一种方法,单应性变换会涉及到单应性矩阵。单应性变换的目标是通过给定的几个点(通常是4对点)来得到单应性矩阵。以下为单应性矩阵的推导过程。
单应性矩阵 H 仅依赖尺度定义,所以,单应性矩阵具有 8 个独立自由度。通常会使第三个值为一来归一化点,即 :a 点坐标(x , y , z ) 转换成 a' (x , y , 1)这样,点就具有唯一的图像坐标 x 和 y 。这个额外的坐标使得我们可以简单使用一个矩阵来表示表换。例如:矩阵H会将一幅图像上的一个点的坐标 a =(x,y,1)映射成另一幅图像上的点的坐标 b =(x1,y1,1),已知 a 和 b ,它们是在同一平面上。 则有下面的公式:
即:
由上面的公式 1=h31x+h32y+h33 可得到:
然后取 V 的最后一列出来作为求解hh。因为矩阵 A 是行满秩,即只有一个自由度。具体实现需要输入两张图片,在两张图片之间找到4个点坐标,由此得到矩阵H。
对b的方程可写成一个矩阵和一个向量相乘,即
其中
若令
则可记为