典型的多层神经网络模型,如何搭建神经网络模型

本文介绍了如何构建BP神经网络模型,包括输入层3节点、隐层5节点和输出层2节点的配置,并探讨了用Visio绘制卷积神经网络图的方法。此外,还讲解了在Matlab中建立三层BP神经网络进行温度预测的步骤,以Iris数据集为例。文中详细阐述了神经网络的基本原理,如人工神经元模型、激活函数,尤其是S形函数的应用。
摘要由CSDN通过智能技术生成

试画出BP神经网络结构输入层3节点,隐层5节点,输出层2节点

BP(Back Propagation)神经网络是1986年由Rumelhart和McCelland为首的科学家小组提出,是一种按误差逆传播算法训练的多层前馈网络,是目前应用最广泛的神经网络模型之一。

BP网络能学习和存贮大量的输入-输出模式映射关系,而无需事前揭示描述这种映射关系的数学方程。它的学习规则是使用最速下降法,通过反向传播来不断调整网络的权值和阈值,使网络的误差平方和最小。

BP神经网络模型拓扑结构包括输入层(input)、隐层(hidden layer)和输出层(output layer)。用WORD可以画,插入形状。

谷歌人工智能写作项目:神经网络伪原创

如何用visio画卷积神经网络图。图形类似下图所示

大概试了一下用visio绘制这个图,除了最左面的变形图片外其余基本可以实现(那个图可以考虑用其它图像处理软件比如Photoshop生成后插入visio),visio中主要用到的图形可以在更多形状-常规-具有透视效果的块中找到块图形,拖入绘图区后拉动透视角度调节的小红点进行调整直到合适为止,其余的块可以按住ctrl+鼠标左键进行拉动复制,然后再进行大小、位置仔细调整就可以了,大致绘出图形示例如下图所示:

如何用matlab构建一个三层bp神经网络模型,用于预测温度。

第0节、引例 本文以Fisher的Iris数据集作为神经网络程序的测试数据集。Iris数据集可以在 找到。

这里简要介绍一下Iri

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值