Two soldiers are playing a game. At the beginning first of them chooses a positive integer n and gives it to the second soldier. Then the second one tries to make maximum possible number of rounds. Each round consists of choosing a positive integer x > 1, such that n is divisible by x and replacing n with n / x. When nbecomes equal to 1 and there is no more possible valid moves the game is over and the score of the second soldier is equal to the number of rounds he performed.
To make the game more interesting, first soldier chooses n of form a! / b! for some positive integer a and b (a ≥ b). Here by k! we denote the factorial of k that is defined as a product of all positive integers not large than k.
What is the maximum possible score of the second soldier?
Input
First line of input consists of single integer t (1 ≤ t ≤ 1 000 000) denoting number of games soldiers play.
Then follow t lines, each contains pair of integers a and b (1 ≤ b ≤ a ≤ 5 000 000) defining the value of n for a game.
Output
For each game output a maximum score that the second soldier can get.
Examples
Input
2 3 1 6 3
Output
2 5
说实话,我对这种题是抗拒的,因为我基本上看不懂题的意思是什么 /(ㄒoㄒ)/~~
翻了别人的博客才懂 ,
题意就是给出两个数a,b,在两个数之间的数,看能拆分为多少个素数相乘,把每个拆分的结果相加
例如 a = 6, b = 3. 相减后得到的数为, 6 , 5 , 4
那么结果= 2(4=2*2) + 1(5=5) + 2(6=2*3) = 5;
是不是似曾相识,对了,就是唯一分解定理;
代码如下:
#include<stdio.h>
#include<string.h>
#include<math.h>
using namespace std;
int num[5006000];
int prime[5060000];
void init()
{
memset(prime,0,sizeof(prime));
memset(num,0,sizeof(num));
for(int i=2;i<=5000005;i++)
{
if(prime[i]==0)
{
for(int j=i;j<=5000005;j+=i)
{
int temp=j;
while(temp%i==0)
{
num[j]++;
temp/=i;
}
prime[j]=1;
}
}
}
for(int i=2;i<=5000005;i++)
{
num[i]=num[i-1]+num[i];
}
}
int main()
{
init();
int t;
scanf("%d",&t);
while(t--)
{
int n,m;
scanf("%d%d",&n,&m);
printf("%d\n",num[n]-num[m]);
}
return 0;
}