**对称点模式(Symmetric Point Pattern)**算法是一种用于分析空间点分布模式的方法。在故障诊断领域,信息融合对于提高诊断准确性和效率具有重要意义。对称点模式算法可以作为一种有效的信息融合方法,帮助故障诊断系统更好地处理和分析空间数据。
1) 信息融合在故障诊断中的重要性
信息融合是将来自多个来源、传感器或数据集的信息进行整合和分析的过程。在故障诊断中,信息融合可以帮助系统更全面地理解设备或系统的状态,从而提高故障检测和诊断的准确性和效率。通过融合来自不同传感器或数据源的信息,可以减少不确定性,提高故障识别的可靠性。
2) 信息融合的困难
信息融合在故障诊断中面临一些挑战和困难,包括:
数据异构性:不同传感器或数据源可能产生不同格式、不同分辨率和不同精度的数据,如何有效地整合这些异构数据是一个挑战。
数据冗余和互补性:不同数据源可能包含冗余信息或互补信息,如何识别和处理这些信息是信息融合的关键。
数据量和处理速度:故障诊断系统可能需要处理大量数据,并在短时间内做出决策,这对信息融合算法的处理速度和效率提出了要求。
不确定性和噪声:实际应用中,数据可能受到噪声和不确定性的影响,如何从这些数据中提取有用信息并进行准确融合是一个挑战。
3) 基于对称点模式的信息融合
基于对称点模式的信息融合方法可以将不同数据源中的点数据进行整合和分析,从而提高故障诊断的准确性和效率。对称点模式算法通过分析点数据的空间分布模式,可以识别出故障的特征和规律,帮助故障诊断系统更好地理解和处理空间数据。
mport numpy as np
from file_operate import get_json
import pandas as pd
import json
import matplotlib.pyplot as plt
from sklearn.preprocessing import MinMaxScaler
# 读取电流数据
djson = get_json('MCSA.json')
company = ['C103A']
comind = 1
mdata = pd.DataFrame(json.loads(djson[company[comind]]['signal']))
params = djson[company[comind]]['param']
label = ['curr_lf_wave_1','curr_lf_wave_2','curr_lf_wave_3',
'curr_lf_wave_1','curr_lf_wave_2','curr_lf_wave_3']
pi_data = mdata[label].to_numpy()[:32768,:]
scaler = MinMaxScaler(feature_range=(0, 1))
pi_data = scaler.fit_transform(pi_data)
N = pi_data.shape[0]
#Set parameters
L = 1 # Time Lag
G = 20 # Gain
A = [0,60,120,180,240,300] # Angles
# Initilize the variables
r = np.zeros((N - L,))
th = np.zeros((len(A), N - L))
tr = np.zeros((len(A), N - L))