基于对称点模式SDP多元数据融合的故障诊断,1区SCI顶刊常客(附matlab代码)

  引言

本期介绍一种用于故障诊断的新颖方法-对称点模式( symmetrized dot pattern,SDP)。SDP直观的将一维序列(温度,振动、电流等)转换成二维镜像雪花图,通过图形中的差异可直观地反应不同的状态序列。基于SDP和深度学习网络的故障诊断方法,频繁登上1区SCI-IEEE trans系列。关于SDP的理论部分,可以在以下文献中找到,本期不在赘述。

  1. F. Huang et al., "Demagnetization Fault Diagnosis of Permanent Magnet Synchronous Motors Using Magnetic Leakage Signals," in IEEE Transactions on Industrial Informatics, vol. 19, no. 4, pp. 6105-6116, April 2023. (中科院1区)

  2. H. Lu, X. Zhao, B. Tao and Z. Yin, "Online Process Monitoring Based on Vibration-Surface Quality Map for Robotic Grinding," in IEEE/ASME Transactions on Mechatronics, vol. 25, no. 6, pp. 2882-2892, Dec. 2020(中科院1区)

  3. Y. Tang et al., "Graph Cardinality Preserved Attention Network for Fault Diagnosis of Induction Motor Under Varying Speed and Load Condition," in IEEE Transactions on Industrial Informatics, vol. 18, no. 6, pp. 3702-3712, June 2022(中科院1区)

  4. Z. Long et al., "Motor Fault Diagnosis Based on Scale Invariant Image Features," in IEEE Transactions on Industrial Informatics, vol. 18, no. 3, pp. 1605-1617, March 2022(中科院1区)

此外,本期着重分享基于SDP的多维/多通道/多元序列的数据融合方法。首先,需要知道什么是多维/多通道/多元序列的数据?很简单,不是一行,也不是一列的数据。

什么样的情景有这些”多“的数据呢?

1.用多轴传感器采集设备的振动信号,比如三轴传感器有x,y,z轴三个通道的数据,这样就形成了多通道数据。

2.传感器布置在不同位置,各位置采集的信号形成的多维数据。比如凯斯西储大学轴承故障数据,在DE端,FE端,BA端分别采集到的信号。

因此,可以将这些信号进行融合,获得更多状态信息,提高诊断性能。

图片

如果数据不是多维的,能不能使用SDP的融合方法呢?当然可以,我们知道这个方法使用于多维数据。数据不是多维的,那就创造成多维的啦。

怎么创造呢?开动脑筋,前期已分享过24种信号分解方法(点我),这些方法天然地将单维数据分解成多个分量。多个分量?!这不就是多维数据了嘛。

图片

02. 使用展示

以凯斯西储大学的轴承故障数据为例。

1.多维数据

首先,导入106这个数据:load 106.mat 。加载后有三组数据:分别是BA、DE、FE端采集的单变量数据。那么,将这三组单变量暂且组成一个多维数据:

data = [X106_BA_time,X106_DE_time,X106_FE_time];

图片

随后,可以看到原始数据有121991个点,以1024个点切割原始数据,形成样本,循环生成SDP融合图像。

图片

SDP图像从水平0开始,逆时针依次是传感器1,传感器2,。。,传感器n

2.单维数据,经过分解

首先,导入106这个数据:load 106.mat 。加载后有三组数据:分别是BA、DE、FE端采集的单变量数据。那么,选择X106_BA_time这单变量作为示例数据:data = X106_BA_time;

随后,可以看到原始数据有121991个点,以1024个点切割原始数据,形成样本

最后,利用emd完成分解(可替换其他分解算法),循环生成SDP融合图像。

图片

SDP图像从水平0开始,逆时针依次是imf1,imf2,。。,imfn

Matlab代码下载

(独创首发matlab版)对称点模式(Symmetrized Dot Pattern)的多元、多通道、多传感器信号融合

(独创首发matlab版)对称点模式(Symmetrized Dot Pattern)的多元、多通道、多传感器信号融合

点击链接跳转:

360种基础优化算法免费下载-matlab

【关注|收藏】超360种群智能优化算法-Matlab代码免费获取(截至2024.07.15)

求解cec测试函数-matlab 

cec2017测试函数使用教程及matlab代码免费下载

cec2018测试函使用教程及matlab代码免费下载

cec2019测试函使用教程及matlab代码免费下载

cec2020测试函使用教程及matlab代码免费下载

cec2021测试函使用教程及matlab代码免费下载

cec2022测试函使用教程及matlab代码免费下载
绘制cec2017/018/2019/2020/2021/2022函数的三维图像教程,SO EASY!

215种群智能优化算法python库

Amazing!Python版215种群智能优化算法https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486669&idx=1&sn=6b439e55b37b6482b8d3831ca85f1d55&chksm=c12be0c8f65c69de71ad51d3b736b871ff52f8646e90624f95dd32b024dfaad369d654aaf8fc#rd

解决12工程设计优化问题-matlab

略微出手,工程设计问题(12)(附Matlab代码)https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247485052&idx=1&sn=80e5573c1c005ee5640e44935044ee35&chksm=c12bea79f65c636fc73758b4f4893502bd89cbd1c5d15d7db15e8b5c94eeae40450439d44944&token=681266555&lang=zh_CN#rd

求解11种cec测试函数-python

【选择自由,免费下载】215种优化算法求解11种cec测试函数-python代码https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486669&idx=2&sn=eea8fb04dc507ab9119e2c97c03ca2f6&chksm=c12be0c8f65c69decd6c8109f6b997986bf58725fdbbd7ab03752cb6f61aacdb5a2dc7fec762#rd

解决30种工程设计优化问题-python

【一码解决】215种优化算法求解30个现实世界的工程设计优化问题,让你的论文增色10倍(附Python代码)https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486669&idx=3&sn=ea6d26ae7cb651e5c368f4c73ade228e&chksm=c12be0c8f65c69de739af72d9793838f59ab77bfee36bc2c204f96e2a9e5c6d87dfbbbae698e#rd

仅需一行,可改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)

用于改进所有优化算法:21种混沌映射方法-混沌初始化(附matlab代码)21种混沌映射方法-混沌初始化,适用于所有优化算法https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486215&idx=2&sn=58f1a69175b0d6431a4c7cdfa114b84d&chksm=c12be702f65c6e14e6bd1ddc33b9cec74991d93303c325853049b7e4afd09039b13083fa79c5&token=25423484&lang=zh_CN#rd

【有经典,有最新】24种信号分解方法(附matlab代码) 

沙场大点兵:24种信号分解方法(附matlab代码)https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486001&idx=1&sn=a87c24cb401017a78a90bd1b1439fcb0&chksm=c12be634f65c6f22368b7229a59ac5ef330b89d710c826dbfd1a1c34a02b1dd7e909c7f40d79&token=25423484&lang=zh_CN#rd

 【分类新范式】27种一维数据转换成二维图像的方法-matlab代码

沙场大点兵:27种一维数据转换成二维图像的方法-matlab代码https://mp.weixin.qq.com/s?__biz=MzkxMDQ5MDk4Ng==&mid=2247486260&idx=1&sn=81b1970cb89364c0289ccdfb403e5388&chksm=c12be731f65c6e273a85456326b503b7f35d9f035405050932ff1926e0b1bfa8076b1bc2d1f2&token=25423484&lang=zh_CN#rd

### 点对称模式SDP)的概念与实现方法 #### 什么是点对称模式SDP) Software Defined Perimeter (SDP),即软件定义边界,是一种网络安全架构模型,旨在通过隐藏网络资源并仅允许经过身份验证和授权的设备访问特定服务来增强安全性。它采用了一种零信任安全理念,确保只有受信任的客户端才能连接到目标服务器[^1]。 在点对称模式下,通常指的是两个节点之间的通信完全对称,双方都扮演着发起者和接收者的角色。这意味着每个参与方都需要完成双向的身份验证过程,并建立加密通道以保护数据传输的安全性。 #### SDP 的主要组件 为了理解其具体实现方式,我们需要先熟悉几个核心组成部分: - **控制器(Controller)**:负责管理接入控制策略以及分发密钥给客户端和服务端。 - **网关(Gateway)**:作为实际提供业务功能的服务入口,在收到合法请求后才会开放相应接口。 - **客户端(Client)**:任何希望访问内部资源的应用程序或者终端设备均需安装专用代理并与控制器交互获取权限。 整个流程大致如下所示: 1. 客户端向控制器发送初始化握手包; 2. 控制器验证该用户的合法性并将临时会话参数返回给客户端; 3. 接下来由客户端利用上述信息构建出完整的认证材料再提交回去等待进一步确认; 4. 如果一切正常,则通知对应的目标主机开启监听状态准备迎接后续操作;反之则拒绝此次尝试结束对话。 值得注意的是,由于采用了严格的准入机制加上动态调整能力使得攻击面大大缩小从而提高了整体防护水平效果显著优于传统防火墙方案单独部署所能达到的程度。 以下是简化版伪代码展示如何模拟这样一个简单的场景: ```python import socket from cryptography.hazmat.primitives.asymmetric import rsa from cryptography.hazmat.primitives import serialization, hashes from cryptography.hazmat.primitives.kdf.pbkdf2 import PBKDF2HMAC from cryptography.hazmat.backends import default_backend import os def generate_keys(): private_key = rsa.generate_private_key( public_exponent=65537, key_size=2048, backend=default_backend() ) pem = private_key.private_bytes( encoding=serialization.Encoding.PEM, format=serialization.PrivateFormat.TraditionalOpenSSL, encryption_algorithm=serialization.NoEncryption() ) return private_key, pem.decode('utf-8') def derive_shared_secret(password, salt): kdf = PBKDF2HMAC( algorithm=hashes.SHA256(), length=32, salt=salt, iterations=100000, backend=default_backend() ) key = kdf.derive(password.encode()) return key.hex() if __name__ == "__main__": client_socket = socket.socket(socket.AF_INET, socket.SOCK_STREAM) server_address = ('localhost', 9999) try: client_socket.connect(server_address) password = input("Enter shared secret: ") salt = os.urandom(16).hex() derived_key_client_side = derive_shared_secret(password, bytes.fromhex(salt)) # Send Salt Value To Server For Verification Process. client_socket.sendall(bytes(f"{salt}", 'utf-8')) received_data = client_socket.recv(1024).decode().strip() if received_data.startswith("ACK"): print("[+] Authentication Successful!") _, peer_pem_encoded_str = received_data.split(":") loaded_peer_pubkey = serialization.load_pem_public_key(peer_pem_encoded_str.encode(),backend=None) generated_local_privkey , _ =generate_keys() ciphertext_message="This Is Encrypted Communication Using Derived Shared Secret." encrypted_payload=ciphertext_message .encode()+derived_key_client_side[:len(ciphertext_message)].encode() signed_encryption_result=generated_local_privkey.sign( data=encrypted_payload , padding=padding.PSS(mgf=padding.MGF1(hashes.SHA256()),salt_length=padding.PSS.MAX_LENGTH), algorithm=hashes.SHA256()) final_transmission_package=[signed_encryption_result]+list(map(ord,list(str(len(encrypted_payload))))+[ord(':')]+list(bytearray(encrypted_payload)) serialized_final_output=''.join([chr(x)for x in final_transmission_package]) client_socket.send(serialized_final_output.encode()) except Exception as e: raise RuntimeError(e) finally: client_socket.close() ``` 以上脚本仅为教学目的编写并不适合生产环境中直接应用,请务必遵循最佳实践指南加固您的解决方案! --- ###
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值