特征既有类型(nominal)变量又有数据/数字(ratio)变量的时候,该怎么进行特征处理呢?不妨试试sklearn的DictVectorizer

直接上代码,然后就着代码分析

>>> from sklearn.feature_extraction import DictVectorizer
>>> v = DictVectorizer(sparse=False)
>>> D = [{'性别': '男', '年龄': 2}, {'性别': '女', '年龄': 23}]
>>> X = v.fit_transform(D)
>>> X
array([[ 2.,  0.,  1.],
       [23.,  1.,  0.]])
>>> v.inverse_transform(X) == [{'年龄': 2.0, '性别=男': 1.0},
...                            {'年龄': 23.0, '性别=女': 1.0}]

>>> v.transform({'性别': '男', '年龄': 267})
array([[267.,   0.,   1.]])

代码中的D是字典类型的特征数据,sparse=False表示输出的不是稀疏矩阵。

Reference

  1. sklearn.feature_extraction.DictVectorizer
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千行百行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值