含绝对值函数的可导性

题目

f ( x 0 ) = 0 f(x_0)=0 f(x0)=0 f ′ ( x 0 ) f'(x_0) f(x0)存在,则 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处可导 ⇔ \Leftrightarrow f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

证明充分性

先证明 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处可导 ⇒ \Rightarrow f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

这里证明原问题的逆否命题,原问题等价于证明 f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0或者 f ′ ( x 0 ) < 0 f'(x_0) <0 f(x0)<0 ⇒ \Rightarrow ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处不可导。下面开始证明:

证明过程

f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0时,有:
lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 > 0 (1) \lim _{x \rightarrow x_0^-} \frac{f(x)-f(x_0)}{x-x_0}=\lim _{x \rightarrow x_0^+} \frac{f(x)-f(x_0)}{x-x_0}>0 \tag{1} xx0limxx0f(x)f(x0)=xx0+limxx0f(x)f(x0)>0(1)

lim ⁡ x → x 0 + [ f ( x ) − f ( x 0 ) ] = f ( x 0 ) = 0 lim ⁡ x → x 0 + f ( x ) > 0 (2) \lim _{x \rightarrow x_0^+}[f(x)-f(x_0)] \xlongequal{f(x_0)=0} \lim _{x \rightarrow x_0^+} f(x)>0 \tag{2} xx0+lim[f(x)f(x0)]f(x0)=0 xx0+limf(x)>0(2)
lim ⁡ x → x 0 − [ f ( x ) − f ( x 0 ) ] = f ( x 0 ) = 0 lim ⁡ x → x 0 − f ( x ) < 0 (3) \lim _{x \rightarrow x_0^-}[f(x)-f(x_0)] \xlongequal{f(x_0)=0} \lim _{x \rightarrow x_0^-} f(x)<0 \tag{3} xx0lim[f(x)f(x0)]f(x0)=0 xx0limf(x)<0(3)
lim ⁡ x → x 0 − ∣ f ( x ) ∣ − ∣ f ( x 0 ) ∣ x − x 0 < 0 (4) \lim _{x \rightarrow x_0^-} \frac{|f(x)|-|f(x_0)|}{x-x_0}<0 \tag{4} xx0limxx0f(x)f(x0)<0(4)
lim ⁡ x → x 0 + ∣ f ( x ) ∣ − ∣ f ( x 0 ) ∣ x − x 0 > 0 (5) \lim _{x \rightarrow x_0^+} \frac{|f(x)|-|f(x_0)|}{x-x_0}>0 \tag{5} xx0+limxx0f(x)f(x0)>0(5)
显然根据以上两式易得 f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处不可导。同理,易得 f ′ ( x 0 ) < 0 f'(x_0) < 0 f(x0)<0 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处不可导。

解释说明

  1. 公式(1)根据 f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0得到的,是 f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0的数学化描述。
  2. 公式(2)是在公式(1)等号左侧和条件 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0的基础上,运用极限的保号性得到的。
  3. 公式(3)是在公式(1)等号右侧和条件 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0的基础上,运用极限的保号性得到的。
  4. 公式(4)是在公式(3)基础上得到的。
  5. 公式(5)是在公式(2)基础上得到的。

证明必要性

请添加图片描述

Reference

含绝对值函数的可导性

<think>嗯,用户需要关于考研数学函数连续的例题和解题方法。首先,我得确认用户的具体需求。他们可能正在准备考研数学,尤其是连续的部分,需要例题和解析来巩固知识点,同时解题技巧也很重要。 首先,我应该回忆一下函数连续的基本概念。根据定义,函数在某点连续需要满足三个条件:函数在该点有定义,极限存在,且极限值等于函数值。特别是分段函数的分段点,这通常是考察的重点,因为这里容易出问题。 然后,例题方面,可能需要包括分段函数绝对值函数、带有分母的函数等常见类型。例如,分段函数在分段点处的连续判断,可能需要分别计算左右极限,并比较它们是否相等且等于函数值。比如用户之前提到的例子,当x≥0时f(x)=x²,x<0时f(x)=-x,在x=0处的连续。这时候左极限是0,右极限也是0,函数值也是0,所以连续。 接下来是解题技巧,可能需要强调分步验证,尤其是特殊点的处理。比如分母为零的点,绝对值函数的转折点,或者分段函数的分段点。另外,可能需要结合数是否存在来判断连续,但要注意连续不一定可,可一定连续。 用户可能还希望了解常见的错误或易错点,比如忽略某一边的极限,或者计算错误。此外,真题中的综合应用,比如连续结合数、积分等知识点,这也是考研中常见的题型。 然后,我需要查找一些典型的例题,比如带有参数的函数连续判断,这需要参数满足什么条件才能连续。例如,给定一个有参数a的分段函数,要求在x=1处连续,求a的值。这种题目需要解方程,将左右极限相等并等于函数值。 另外,绝对值函数的处理也是一个重点,比如将函数写成绝对值形式,然后在转折点处分开讨论。例如f(x)=|x-a|,在x=a处的连续,虽然左右极限相等,但可能存在尖点致不可,但连续。 还需要考虑函数的四则运算和复合函数的连续,比如连续函数的和、差、积、商(分母不为零)以及复合函数都是连续的。这些定理的应用可能在解题中用到。 对于解题方法,可能需要分步骤:首先确定可疑的不连续点,然后分别计算这些点的左右极限和函数值,最后比较是否满足连续的定义。此外,图像法可能帮助理解,尤其是在快速判断是否存在跳跃或可去间断点的时候。 然后,关于例题解析的结构,可能需要每个例题都包题目、解析步骤和关键点总结。例如,例题1可以是分段函数在分段点的连续判断,例题2是有参数的函数连续,例题3是绝对值函数的连续分析。 最后,相关问题部分需要基于用户的问题和回答内容,比如多元函数的连续判断,连续与可的关系,或者闭区间上连续函数质应用。这些问题应该能够帮助用户进一步深入理解连续的相关知识,并解决可能的相关问题。</think>针对考研数学函数连续的考查重点,结合历年真题和权威教材整理以下例题解析与解题技巧: **一、典型例题解析** **例题1**(分段函数连续) 分析函数$f(x)=\begin{cases} e^{1/x} & x \neq 0 \\ 0 & x =0 \end{cases}$在x=0处的连续 **解题步骤**: 计算$\lim_{x→0^-} e^{1/x}=0$,$\lim_{x→0^+} e^{1/x}=+\infty$ 因左右极限不相等,故x=0为第二类间断点(无穷间断点) **例题2**(函数连续) 确定$a$值使$f(x)=\begin{cases} x^2+2 & x ≤1 \\ ax+1 & x >1 \end{cases}$在x=1处连续 **解题步骤**: 计算左极限$\lim_{x→1^-}f(x)=1^2+2=3$ 右极限$\lim_{x→1^+}f(x)=a·1+1=a+1$ 令$3=a+1$得$a=2$ **二、核心解题技巧** **1. 三步验证法** 严格遵循连续定义验证: - 检查$f(x_0)$是否存在 - 计算$\lim_{x→x_0}f(x)$是否存在 - 验证两者是否相等 **2. 特殊点处理表** | 函数类型 | 重点检查点 | 典型例题 | |----------------|---------------------|---------------------------| | 分段函数 | 分段连接点 | $f(x)=\frac{|x|}{x}$在x=0 | | 有理函数 | 分母零点 | $f(x)=\frac{1}{(x-2)(x+3)}$ | | 复合函数 | 内外函数定义域交界 | $f(x)=\ln(1+\cos x)$ | **3. 间断点分类技巧** ```mathematica 第一类间断点(左右极限存在): - 可去间断点:lim f(x) ≠ f(x₀) - 跳跃间断点:lim⁻f(x) ≠ lim⁺f(x) 第二类间断点:至少单侧极限不存在 ``` **三、真题进阶技巧** 1. **连续+可综合题** 当题目要求"确定函数连续且可"时,需分别建立方程: $$\begin{cases} \lim_{x→x_0}f(x) = f(x_0) \\ \lim_{h→0}\frac{f(x_0+h)-f(x_0)}{h} \text{ 存在} \end{cases}$$ 2. **参数分析法** 对于函数$f(x)=\begin{cases} g(x) & x ≤a \\ h(x) & x >a \end{cases}$,建立方程: $$g(a) = \lim_{x→a^+}h(x)$$ **四、易错点警示** - 忽略函数定义域边界点(如$f(x)=\sqrt{x}$在x=0处) - 误判振荡间断点(如$f(x)=\sin\frac{1}{x}$在x=0处) - 复合函数连续误用(外函数连续但内函数不连续时整体不连续)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千行百行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值