含绝对值函数的可导性

题目

f ( x 0 ) = 0 f(x_0)=0 f(x0)=0 f ′ ( x 0 ) f'(x_0) f(x0)存在,则 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处可导 ⇔ \Leftrightarrow f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

证明充分性

先证明 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处可导 ⇒ \Rightarrow f ′ ( x 0 ) = 0 f'(x_0)=0 f(x0)=0

这里证明原问题的逆否命题,原问题等价于证明 f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0或者 f ′ ( x 0 ) < 0 f'(x_0) <0 f(x0)<0 ⇒ \Rightarrow ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处不可导。下面开始证明:

证明过程

f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0时,有:
lim ⁡ x → x 0 − f ( x ) − f ( x 0 ) x − x 0 = lim ⁡ x → x 0 + f ( x ) − f ( x 0 ) x − x 0 > 0 (1) \lim _{x \rightarrow x_0^-} \frac{f(x)-f(x_0)}{x-x_0}=\lim _{x \rightarrow x_0^+} \frac{f(x)-f(x_0)}{x-x_0}>0 \tag{1} xx0limxx0f(x)f(x0)=xx0+limxx0f(x)f(x0)>0(1)

lim ⁡ x → x 0 + [ f ( x ) − f ( x 0 ) ] = f ( x 0 ) = 0 lim ⁡ x → x 0 + f ( x ) > 0 (2) \lim _{x \rightarrow x_0^+}[f(x)-f(x_0)] \xlongequal{f(x_0)=0} \lim _{x \rightarrow x_0^+} f(x)>0 \tag{2} xx0+lim[f(x)f(x0)]f(x0)=0 xx0+limf(x)>0(2)
lim ⁡ x → x 0 − [ f ( x ) − f ( x 0 ) ] = f ( x 0 ) = 0 lim ⁡ x → x 0 − f ( x ) < 0 (3) \lim _{x \rightarrow x_0^-}[f(x)-f(x_0)] \xlongequal{f(x_0)=0} \lim _{x \rightarrow x_0^-} f(x)<0 \tag{3} xx0lim[f(x)f(x0)]f(x0)=0 xx0limf(x)<0(3)
lim ⁡ x → x 0 − ∣ f ( x ) ∣ − ∣ f ( x 0 ) ∣ x − x 0 < 0 (4) \lim _{x \rightarrow x_0^-} \frac{|f(x)|-|f(x_0)|}{x-x_0}<0 \tag{4} xx0limxx0f(x)f(x0)<0(4)
lim ⁡ x → x 0 + ∣ f ( x ) ∣ − ∣ f ( x 0 ) ∣ x − x 0 > 0 (5) \lim _{x \rightarrow x_0^+} \frac{|f(x)|-|f(x_0)|}{x-x_0}>0 \tag{5} xx0+limxx0f(x)f(x0)>0(5)
显然根据以上两式易得 f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处不可导。同理,易得 f ′ ( x 0 ) < 0 f'(x_0) < 0 f(x0)<0 ∣ f ( x ) ∣ |f(x)| f(x) x 0 x_0 x0处不可导。

解释说明

  1. 公式(1)根据 f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0得到的,是 f ′ ( x 0 ) > 0 f'(x_0) > 0 f(x0)>0的数学化描述。
  2. 公式(2)是在公式(1)等号左侧和条件 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0的基础上,运用极限的保号性得到的。
  3. 公式(3)是在公式(1)等号右侧和条件 f ( x 0 ) = 0 f(x_0)=0 f(x0)=0的基础上,运用极限的保号性得到的。
  4. 公式(4)是在公式(3)基础上得到的。
  5. 公式(5)是在公式(2)基础上得到的。

证明必要性

请添加图片描述

Reference

含绝对值函数的可导性

  • 2
    点赞
  • 14
    收藏
    觉得还不错? 一键收藏
  • 打赏
    打赏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

千行百行

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值