函数和绝对值函数可导,可积,连续,极限间的关系

极限

连续

可导

可积

可积的四则

可积±可积=可积                           可积×可积=可积

可积±不可积=不可积                    可积×不可积=不一定

不可积±不可积=不一定                不可积×不可积=不一定

变限积分的性质的总结

f(x)可积 则F(x)连续

f(x)连续 则F(x)可导

 

 

原函数存在定理

闭区间,连续:一定存在原函数

震荡间断点:可能存在间断点

第一类间断点/无穷间断点:一定不存在间断点

可积定理

可积:一定有界【逆否命题:无界函数一定不可积】

闭区间&有界&且有有限个间断点:可积

闭区间&单调:可积

闭区间&连续:可积

积分比较定理

 比较定理的推广

f(x)在闭区间[a,b]连续,f(x)≥0,且不恒等于0,则{\int_{a}^{b}}f(x)dx>0大于

 f(x)在闭区间[a,b]可积,f(x)≥0,且不恒等于0,则{\int_{a}^{b}}f(x)dx≥0(大于等于

 

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值