极限
连续
可导
可积
可积的四则
可积±可积=可积 可积×可积=可积
可积±不可积=不可积 可积×不可积=不一定
不可积±不可积=不一定 不可积×不可积=不一定
变限积分的性质的总结
f(x)可积 则F(x)连续
f(x)连续 则F(x)可导
原函数存在定理
闭区间,连续:一定存在原函数
震荡间断点:可能存在间断点
第一类间断点/无穷间断点:一定不存在间断点
可积定理
可积:一定有界【逆否命题:无界函数一定不可积】
闭区间&有界&且有有限个间断点:可积
闭区间&单调:可积
闭区间&连续:可积
积分比较定理
比较定理的推广
f(x)在闭区间[a,b]连续,f(x)≥0,且不恒等于0,则(大于)
f(x)在闭区间[a,b]可积,f(x)≥0,且不恒等于0,则≥0(大于等于)