一.微分方程的基本概念
1.微分方程
含导数或微分的方程称为微分方程,一般形式为
f
(
x
,
y
′
,
.
.
.
,
y
(
n
)
)
=
0
f(x,y',...,y^{(n)})=0
f(x,y′,...,y(n))=0
2.微分方程的阶数
微分方程中所含导数或微分的最高阶数称为微分方程的阶数。
3.微分方程的解
使得微分方程成立的函数称为微分方程的解。
不含任意常数的解称为微分方程的特解。
若微分方程的解中所含的相互独立的任意常数的个数与微分方程的阶数相等,称这个解为微分方程的通解。
二.高阶微分方程
1.二阶常系数齐次线性微分方程的解法
二阶常系数齐次线性微分方程
形如
y
′
′
+
p
y
′
+
q
=
0
(
p
,
q
为常数
)
y''+py'+q=0(p,q为常数)
y′′+py′+q=0(p,q为常数)的方程称为二阶常系数齐次线性微分方程。
求解步骤如下
求解方程
y
′
′
+
p
y
′
+
q
=
0
y''+py'+q=0
y′′+py′+q=0的特征方程
λ
2
+
p
λ
+
q
=
0
\lambda^2+p\lambda+q=0
λ2+pλ+q=0
根据特征方程根的不同分为如下三种情况:
1)当
Δ
=
p
2
−
4
q
>
0
\Delta=p^2-4q>0
Δ=p2−4q>0,两特征值
λ
1
≠
λ
2
\lambda_1≠\lambda_2
λ1=λ2,则原方程的通解为
y
=
C
1
e
λ
1
x
+
C
2
e
λ
2
x
y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}
y=C1eλ1x+C2eλ2x
2)当
Δ
=
p
2
−
4
q
=
0
\Delta=p^2-4q=0
Δ=p2−4q=0,特征方程有两个相等的实根
λ
1
=
λ
2
\lambda_1=\lambda_2
λ1=λ2,则原方程的通解为
y
=
(
C
1
+
C
2
x
)
e
λ
1
x
y=(C_1+C_2x)e^{\lambda_1x}
y=(C1+C2x)eλ1x
3)当
Δ
=
p
2
−
4
q
<
0
\Delta=p^2-4q<0
Δ=p2−4q<0,特征方程有两个共轭虚根
λ
1
=
α
+
β
i
\lambda_1=\alpha+\beta i
λ1=α+βi和
λ
2
=
α
−
β
i
\lambda_2=\alpha-\beta i
λ2=α−βi,则原方程的通解为
y
=
e
α
x
(
C
1
c
o
s
β
x
+
C
2
s
i
n
β
x
)
y=e^{\alpha x}(C_1cos\beta x+C_2 sin\beta x)
y=eαx(C1cosβx+C2sinβx)
2.三阶常系数齐次线性微分方程
形如
y
′
′
′
+
p
y
′
′
+
q
y
′
+
r
y
=
0
y'''+py''+qy'+ry=0
y′′′+py′′+qy′+ry=0
的微分方程为三阶常系数齐次线性微分方程
其特征方程为
λ
3
+
p
λ
2
+
q
λ
+
r
=
0
\lambda^3+p\lambda^2+q\lambda+r=0
λ3+pλ2+qλ+r=0
根据特征值的不同情形通解如下:
1)当
λ
1
,
λ
2
,
λ
3
\lambda_1,\lambda_2,\lambda_3
λ1,λ2,λ3是实数,并且两两不等时,通解为
y
=
C
1
e
λ
1
x
+
C
2
e
λ
2
x
+
C
3
e
λ
3
x
y=C_1e^{\lambda_1x}+C_2e^{\lambda_2x}+C_3e^{\lambda_3x}
y=C1eλ1x+C2eλ2x+C3eλ3x
2)当
λ
1
,
λ
2
,
λ
3
\lambda_1,\lambda_2,\lambda_3
λ1,λ2,λ3是实数,并且
λ
1
=
λ
2
≠
λ
3
\lambda_1=\lambda_2≠\lambda_3
λ1=λ2=λ3时,通解为
y
=
(
C
1
+
C
2
x
)
e
λ
1
x
+
C
3
e
λ
3
x
y=(C_1+C_2x)e^{\lambda_1x}+C_3e^{\lambda_3x}
y=(C1+C2x)eλ1x+C3eλ3x
3)当
λ
1
,
λ
2
,
λ
3
\lambda_1,\lambda_2,\lambda_3
λ1,λ2,λ3是实数,并且
λ
1
=
λ
2
=
λ
3
\lambda_1=\lambda_2=\lambda_3
λ1=λ2=λ3时,通解为
y
=
(
C
1
+
C
2
x
+
C
3
x
2
)
e
λ
1
x
y=(C_1+C_2x+C_3x^2)e^{\lambda_1x}
y=(C1+C2x+C3x2)eλ1x
4)当
λ
1
\lambda_1
λ1是实数,
λ
2
=
α
+
β
i
\lambda_2=\alpha+\beta i
λ2=α+βi和
λ
3
=
α
−
β
i
\lambda_3=\alpha-\beta i
λ3=α−βi时,通解为
y
=
C
1
e
λ
1
x
+
e
α
x
(
C
2
c
o
s
β
x
+
C
3
s
i
n
β
x
)
y=C_1e^{\lambda_1x}+e^{\alpha x}(C_2cos\beta x+C_3sin\beta x)
y=C1eλ1x+eαx(C2cosβx+C3sinβx)