题目
在一个3×3的网格中,1~8这8个数字和一个“x”恰好不重不漏地分布在这3×3的网格中。
例如:
1 2 3
x 4 6
7 5 8
在游戏过程中,可以把“x”与其上、下、左、右四个方向之一的数字交换(如果存在)。
我们的目的是通过交换,使得网格变为如下排列(称为正确排列):
1 2 3
4 5 6
7 8 x
例如,示例中图形就可以通过让“x”先后与右、下、右三个方向的数字交换成功得到正确排列。
交换过程如下:
1 2 3 \ 1 2 3 \ 1 2 3\ 1 2 3
x 4 6 \ 4 x 6 \4 5 6 \4 5 6
7 5 8 \ 7 5 8 \7 x 8 \7 8 x
现在,给你一个初始网格,请你求出得到正确排列至少需要进行多少次交换。
输入格式
输入占一行,将3×3的初始网格描绘出来。
例如,如果初始网格如下所示:
1 2 3
x 4 6
7 5 8
则输入为:1 2 3 x 4 6 7 5 8
输出格式
输出占一行,包含一个整数,表示最少交换次数。
如果不存在解决方案,则输出”-1”。
输入样例:
2 3 4 1 5 x 7 6 8
输出样例
19
题目分析
任意的初始状态start,比如是start=“23415x769”,最终状态是end=“12345678x” 求初始状态变成 最终状态end的最少步数。
这里需要抽象一下,将一个状态(一个字符串) 抽象成图中的一个结点a,如果一个状态可以变成另一个状态b,就在图中两个结点a和b之间建立一条有向边 a → b a\rightarrow b a→b,边的权值是1.
那么该问题就变成:给定一个起点 和一个终点,从起点到终点最少走多少步。 可以使用BFS()来求最短路。
BFS()需要两个数据结构:1个队列queue,一个距离数组dist[ ]
难点如下:
- 状态表示复杂:这里每个状态是一个3 ×3的小矩阵
- 如何记录每个状态到初始状态的距离
解决方法:
- 用一个字符串表示一个3 ×3的小矩阵,比如是start=“23415x769”,最终状态是end=“12345678x” ,那么队列就可以是
queue<string>
- 距离用哈希表来存,
unordered_map<string ,int>
想明白这些表示的问题,真正的难点在于如何实现状态转移
start="23415x769"这个状态可以状态成几种状态?
1) 需要把这个一维字符串转换成二维的小矩阵
映射方法(假设矩阵每行m个数) 则 一维下标t转换为二维下标(x,y) 有如下公式:
x= t /m; //m是矩阵每行元素个数,本例中 m = 3
y=t% m;
2)状态转移:二维矩阵中的点(x,y)可以转移到它的上下左右四个方向。
3)最后再将二维矩阵坐标映射成1维字符串中的下标。
二维小矩阵中坐标恢复到一维坐标:
t= x * m+ y; //m是矩阵每行元素个数,本例中 m = 3
然后就是标准的bfs模板。
请看代码:
ac代码
#include<iostream>
#include<algorithm>
#include<unordered_map>
#include<queue>
#include<string>
using namespace std;
int bfs(string start){
string end="12345678x";//终点
queue<string> q;
unordered_map<string,int> d;//距离数组
q.push(start);
d[start]=0;
int dx[4]={0,0,-1,1}, dy[4]={1,-1,0,0};
while(q.size()){
auto t=q.front();//t为字符串
q.pop();
int dist=d[t];
if(t==end) return dist; //到了终点 返回 dist
//状态转移
int k=t.find('x'); //找到x的位置
//一维数组下标转化为二维数组下标(x,y)
int x= k/3,y=k %3; //(x,y)为空格x的位置
for(int i=0;i<4;i++){
int a= x + dx[i] , b =y +dy[i]; //(a,b)为空格上下左右的某一个值
if(a>= 0 && a<3 && b>=0 && b<3 ){
swap(t[k],t[a*3+b]); //二维下标对应到一维下标 ,状态更新
if(!d.count(t)){ //之前没搜到
d[t]=dist+1;
q.push(t);
}
swap(t[k],t[a*3+b]); //状态恢复
}
}
}
return -1; //到不了终点 返回-1
}
int main(){
string start;
for(int i=0;i<9;i++){
char c;
cin>>c;
start+= c;
}
cout<<bfs(start) <<endl;
return 0;
}