自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

阿正的梦工坊

时间的朋友

  • 博客(165)
  • 资源 (6)
  • 收藏
  • 关注

原创 深入剖析ReLU激活函数:特性、优势与梯度消失问题的解决之道,以及Leaky ReLU 和 Parametric ReLU

本文将从ReLU的定义、数学特性、梯度行为以及其在深度学习中的应用出发,深入探讨其为何能有效避免梯度消失问题,并提供一些深刻的洞见,面向具有扎实基础的深度学习研究者。

2025-03-24 14:15:00 1539

原创 深入分析Tanh激活函数:数学特性、应用与洞见

tanh激活函数凭借其零中心性、对称性和平滑的非线性,在深度学习早期扮演了重要角色。

2025-03-24 13:44:27 1147

原创 字节DAPO算法:改进DeepSeek的GRPO算法-解锁大规模LLM强化学习的新篇章(代码实现)

本篇博客将为熟悉PPO和GRPO的深度学习与强化学习研究者详细介绍DAPO的创新点及其数学基础。

2025-03-23 22:25:09 1688

原创 CaiT (Class-Attention in Image Transformers):深度图像Transformer的创新之路

CaiT 通过 LayerScale 和 Class-Attention Layers 两大创新,成功推动了图像Transformer向更深处发展,不仅在 ImageNet 上实现了 SOTA,还为深层网络的优化与架构设计提供了宝贵经验。

2025-03-23 19:31:44 805

原创 CNN的空间归纳偏置(Inductive Bias):深入解析其本质与影响(与transformer的比较)

CNN的空间归纳偏置是其成功的关键,源于局部性、平移不变性和层次结构的假设,使其在视觉任务中高效且数据友好。Transformer则通过去除这些偏置换取了灵活性和全局建模能力,但也带来了对数据和计算的高需求。理解这一差异不仅有助于选择合适的模型,也为设计下一代视觉架构提供了启示。

2025-03-22 16:36:33 1114

原创 DeiT:数据高效的图像Transformer及其工作原理详解

本文将详细介绍DeiT的原理,特别针对熟悉Transformer结构的深度学习研究者,深入探讨其架构设计、训练策略以及创新的蒸馏方法。

2025-03-22 16:15:42 1019

原创 大模型训练为什么选择交叉熵损失(Cross-Entropy Loss):均方误差(MSE)和交叉熵损失的深入对比

本文将从数学定义、理论特性、与 MSE 的对比,以及适用于分类任务的深刻原因等方面,详细剖析交叉熵损失,并提供一些独特的洞见。

2025-03-21 21:55:33 1298 1

原创 MSE分类时梯度消失的问题详解和交叉熵损失的梯度推导

数学推导和详细解释

2025-03-21 21:19:23 1239

原创 Hinton提出的知识蒸馏(Knowledge Distillation,简称KD):原理解释和代码实现

站在2025年大语言模型(LLM)蓬勃发展的时代回看这篇经典论文,我们不仅能感受到其奠基性贡献,还能从中挖掘出与当今技术趋势共鸣的深刻洞见。本文将详细解析知识蒸馏的核心思想、技术细节,并结合LLM的应用场景探讨其现代意义。

2025-03-21 19:05:20 1123

原创 温度(Temperature)在大模型输出中的作用与底层原理

温度(temperature)作为一个超参数,在控制输出分布的“平滑性”或“尖锐性”方面起着关键作用。

2025-03-21 18:14:43 909

原创 Swin Transformer:面向视觉任务的层次化Transformer(代码实现)

Swin Transformer(Shifted Window Transformer)通过引入层次化设计和移位窗口(Shifted Window)机制,克服了传统ViT的局限性

2025-03-21 16:24:00 841

原创 Meta Platforms Inc.(原Facebook)2024-2025 年最新发展深度分析报告

本报告旨在全面分析Meta最新的发展动态,包括公司发展历程及更名原因、商业模式与收入结构、核心产品现状、全球各主要市场的表现、最新财务数据,以及公司在人工智能领域的战略布局,并将Meta的AI战略与Google、OpenAI等同行进行对比。通过梳理2024年至2025年的最新英文资料(如官方财报、投资者会议记录、媒体报道和行业研究),本报告力求呈现Meta Platforms在这一时期的经营状况与战略转型,并评估其未来发展方向。

2025-03-21 13:35:15 1311

原创 《傲慢与偏见》(Pride and Prejudice)简介

《傲慢与偏见》(Pride and Prejudice)是英国著名小说家简·奥斯汀(Jane Austen)于1813年出版的经典爱情小说。故事以18世纪末19世纪初英国乡村的社交生活为背景,通过描写主人公伊丽莎白·班内特(Elizabeth Bennet)和达西先生(Mr. Darcy)之间的爱情发展,探讨了爱情、阶级、家庭和人性等主题。

2025-03-20 21:40:14 1076

原创 床头灯3000词:《傲慢与偏见》(Pride and Prejudice)阅读(英语学习)记录

英语学习记录

2025-03-20 21:38:06 1019

原创 Uber的发展历程和商业模式分析以及竞争对手分析

本文将详细分析Uber的商业模式、发展历程、全球扩张战略、财务状况(特别是2024年和2025年的最新数据)、竞争对手(包括滴滴出行等)的比较,以及技术创新等方面,深入探讨Uber如何在机遇与挑战中发展成为全球共享出行巨头,并展望其未来前景。

2025-03-20 14:13:34 1193

原创 Feature Pyramid Networks(FPN)介绍:代码实现以及与UNet的区别

FPN通过结合自底向上(Bottom-up)和自顶向下(Top-down)的路径,以及横向连接(Lateral Connections),在所有尺度上生成具有强语义的特征图。

2025-03-19 18:40:30 786

原创 U-ViT:基于Vision Transformer的扩散模型骨干网络核心解析

U-ViT的核心设计理念是将ViT的灵活性与扩散模型的需求相结合,同时借鉴U-Net的长跳跃连接(long skip connections),以适应图像生成的像素级预测任务。

2025-03-19 16:07:07 1200

原创 全球奢侈品行业2023-2024市场变化及2025趋势展望

长期趋势上,奢侈品行业的基本逻辑未变:全球财富累积和消费升级将持续扩大高端消费人群,品牌文化和稀缺属性支撑行业高利润。McKinsey在2025展望中指出,大多数业内人士认为真正的行业信心全面回归可能要到2030年。因此2025年应被视作蛰伏期后的恢复起点,而非重返高速增长的狂欢

2025-03-19 14:44:12 1334

原创 Linux 命令:按内存使用大小排序查看 PID 的完全指南

在 Linux 系统中,监控进程的内存使用情况是日常运维和调试的重要任务。无论是排查内存泄漏,还是优化系统性能,我们经常需要找到占用内存最多的进程,并获取它们的 PID(进程 ID)。本文将详细介绍如何使用 Linux 命令实现这一需求,从基础用法到高级技巧,带你全面掌握这一技能。

2025-03-18 22:12:43 1077

原创 Linux top 命令详解:从入门到高级用法

在 Linux 系统中,top是一个强大的实时监控工具,用于查看系统资源使用情况和进程状态。

2025-03-18 22:02:13 1435

原创 Diffusion Transformers (DiTs) - 用Transformer革新Diffusion模型

这篇博客将为熟悉Diffusion模型和U-Net的读者详细解读DiTs的核心贡献、组成模块、数据流方向,以及它解决的问题和生成图像的过程。

2025-03-18 21:30:32 1535

原创 adaLN出处《FiLM: Visual Reasoning with a General Conditioning Layer》一种通用的视觉推理条件层方法(代码实现)

FiLM 的核心在于通过“条件输入”(比如语言问题)对目标神经网络(比如卷积神经网络,CNN)的中间特征进行特征级别的线性调制。

2025-03-18 20:49:25 1196

原创 丹尼尔·卡尼曼(Daniel Kahneman):思想、核心观点与学术贡献

用诺贝尔经济学奖评选委员会的一句话来概括卡尼曼的贡献:他“将心理学的洞见融入经济学,尤其是关于在人面对不确定性时如何决策的研究”

2025-03-18 14:02:52 1259

原创 认知科学与学习机制:近五年脑科学前沿进展报告

本报告将首先介绍认知神经科学方面的进展,包括注意力、记忆和决策过程的新见解;接着讨论学习与记忆的神经可塑性机制以及深度学习与大脑工作的关系;最后探讨这些发现对教育、医疗、人工智能和心理学等领域的实际应用意义。我们将引用最新权威研究的结果,并力求以科普风格解释其内容,使广大读者能够理解这些前沿进展如何影响我们的生活。

2025-03-18 13:15:49 948

原创 《Classifier-Free Diffusion Guidance》的核心观点与方法

传统的分类器引导通过结合扩散模型的分数估计(score estimate)和分类器的梯度来调整采样方向,而无分类器引导则通过联合训练一个条件扩散模型和一个无条件扩散模型,并在采样时混合两者的分数估计来达到类似目的。

2025-03-17 21:04:24 880

原创 解读《Diffusion Models Beat GANs on Image Synthesis》——核心观点与Classifier Guidance方法详解(代码实现)

Classifier Guidance:提出了一种简单高效的方法,利用分类器的梯度指导扩散过程,从而在条件生成任务中显著提升样本质量,同时允许灵活地在多样性和保真度之间进行权衡。

2025-03-17 15:24:02 987

原创 泰勒·斯威夫特(Taylor Swift)的音乐影响力与商业版图深度研究

本报告将对泰勒·斯威夫特的职业生涯进行回顾,分析她的音乐影响力和商业模式,并重点关注2024-2025年的最新动态。报告还将把斯威夫特与其他美国乐坛巨星(如比昂丝、爱黛尔、蕾哈娜、贾斯汀·比伯等)进行对比,分析她在竞争中的独特优势。为了增强说服力,报告将引用权威的英文资料和数据,展示斯威夫特的收入增长、专辑销量和演唱会票房等关键统计。

2025-03-17 14:19:18 1134

原创 深入解析 Latent Diffusion Model(潜在扩散模型,LDMs)(代码实现)

传统扩散模型在像素空间直接操作的特性导致其训练和推理过程计算成本极高,限制了其在高分辨率图像生成中的广泛应用。为了解决这一问题,Latent Diffusion Model(潜在扩散模型,LDMs)应运而生,它通过在潜在空间中运行扩散过程,显著降低了计算复杂度,同时保留甚至提升了生成质量。

2025-03-16 19:34:01 1700 1

原创 深入解析“Off-the-Shelf”——从产品到AI模型的通用概念

“Off-the-Shelf” 的核心含义是“现成的、可直接使用的、不需要额外定制的”

2025-03-16 16:02:09 777

原创 深入解析 FID:深度学习生成模型评价指标

FID 作为生成模型评价的核心指标,通过比较特征分布的 Fréchet 距离,提供了一种高效且语义敏感的评估方法。

2025-03-16 15:48:28 1910

原创 PixelCNN++:提升PixelCNN性能的新方法(代码实现)

PixelCNN++在保持PixelCNN基本框架的基础上,引入了五项关键改进:离散逻辑混合似然(Discretized Logistic Mixture Likelihood)、整像素条件(Conditioning on Whole Pixels)、下采样(Downsampling)、短路连接(Short-cut Connections)以及Dropout正则化。

2025-03-16 15:32:40 962

原创 尤瓦尔·诺亚·赫拉利(Yuval Noah Harari)作品和思想深度报告

本报告将对赫拉利的思想体系进行全面解读。首先,我们将解析他三部代表作和2024年新书《Nexus: 智人之上》的核心观点,并结合2024-2025年他最新的研究成果与公开演讲内容,梳理其思想演进脉络。

2025-03-15 13:38:40 995

原创 Gated PixelCNN:提升自回归图像生成的利器(代码实现)

Gated PixelCNN 通过门控卷积和双堆栈结构,将 PixelCNN 的性能推至新高度。其数学公式清晰地展示了自回归和条件化的实现方式,为深度学习研究者提供了一个强大而灵活的生成模型框架。

2025-03-14 20:16:36 795

原创 register_buffer(‘mask‘, ...)是什么(在PixelCNN中的应用):掩码卷积的具体过程详解

代码详解与例子模拟

2025-03-14 16:20:17 1075

原创 PixelCNN:基于自回归的图像生成模型及其数学原理

PixelCNN是Google DeepMind团队在2016年提出的一个里程碑式图像生成模型,首次出现在论文《Pixel Recurrent Neural Networks》中。它通过自回归方式建模自然图像的联合分布,以卷积神经网络(CNN)为核心,结合掩码机制实现了高效的像素级预测。本文将面向深度学习研究者,深入剖析PixelCNN的数学原理、模型设计及其在生成任务中的意义。

2025-03-14 16:09:14 1104 1

原创 斯蒂芬·平克(Steven Arthur Pinker):人类心智与语言的探索者(深度报告)

斯蒂芬·平克作为当代最具影响力的思想家之一,其贡献跨越科学研究、思想传播和社会启蒙多个层面。首先,在科学界,他是一位开创性的研究者。从视觉认知到语言习得,从进化心理学到数据分析,平克产出了一系列重要成果,深化了我们对心智如何运作的理解。他提出的理论和发现(如语言本能、规则-记忆双重机制等)已被广泛引用和讨论,成为认知科学教科书中的内容。

2025-03-14 13:34:02 906

原创 U-Net:卷积神经网络在生物医学图像分割中的经典之作(代码实现)

它的命名源于其独特的“U”形架构,这种架构结合了下采样(收缩路径)和上采样(扩展路径),使其在像素级分割任务中表现出色。

2025-03-13 16:02:33 939

原创 探索 PyTorch 中的 ConvTranspose2d 及其转置卷积家族

原理介绍

2025-03-13 15:46:10 1186

原创 深入了解 PyTorch 中的 MaxPool2d 及其池化家族函数

函数的原理解析

2025-03-13 15:30:16 929

原创 塔勒布(Nassim Nicholas Taleb)“五部曲”深度分析报告:《随机漫步的傻瓜》《黑天鹅》《智慧与魔咒》《反脆弱》以及《非对称风险》

本文将围绕塔勒布的学术背景、生平经历及其五部经典著作,系统分析其核心思想的发展脉络和影响,并结合现实案例和相关理论对其思想体系进行比较和评述。

2025-03-13 14:04:54 1045

李永乐线代强化笔记2020年.rar

李老师对出题形式、考试重点了如指掌,解题思路极其灵活,辅导针对性极强,效果优良,成绩显著,受到广大学员的交口称赞!这是笔者自己的笔记,整理成pdf版,方便大家复习使用。

2020-10-27

李永乐线代基础班笔记.zip

李永乐线性代数基础班笔记2020年。用过了都说好!好在思路与题型的延伸方面。举一反三(举一反N也不夸张)

2020-09-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除