自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+

阿正的梦工坊

时间的朋友

  • 博客(124)
  • 资源 (6)
  • 收藏
  • 关注

原创 DPO中的长度剥削问题与创新性正则化解决方案

Disentangling Length from Quality in Direct Preference Optimization

2025-04-19 14:20:24 679

原创 无需思考的推理模型依然有效:Reasoning Models Can Be Effective Without Thinking

论文最重要的理论贡献是挑战了显式思考过程的必要性。实验表明,即使在经过强化学习或CoT微调的推理模型中,显式思考可能并非性能提升的唯一途径。NoThinking的成功表明,模型可能通过训练过程中内化的推理能力直接生成高质量答案。这一发现为高效推理提供了新的视角。

2025-04-18 20:16:07 651

原创 红杉资本(Sequoia Capital)深度研究报告

红杉资本和红杉中国

2025-04-18 18:36:48 1117

原创 BERT为何最多处理512个Token?原因与解决方案

BERT有一个广为人知的限制:它最多只能处理512个token的文本输入。为什么会有这个瓶颈?这个限制的根本原因是什么?有没有解决办法?

2025-04-18 16:18:37 724

原创 Non-local Neural Networks(非局部神经网络):什么是非局部均值?

《Non-local Neural Networks》论文的一个关键贡献是揭示了其提出的非局部操作(Non-local Operation)与Transformer中的自注意力机制(Self-Attention)的联系,并将其扩展为一个更通用的构建模块,适用于图像和视频的时空建模。

2025-04-18 15:44:51 376

原创 Energy Matching中的训练目标分析

在《Energy Matching: Unifying Flow Matching and Energy-Based Models for Generative Modeling》一文中,作者提出了一种新颖的生成模型框架——Energy Matching,通过结合最优传输(Optimal Transport, OT)和能量基础模型(Energy-Based Models, EBMs)的优势,实现高效的样本生成和显式的似然估计。

2025-04-17 20:38:59 1040

原创 JKO方案中的一阶最优性条件与生成框架

一阶最优性条件

2025-04-17 20:04:42 672

原创 什么是Jordan–Kinderlehrer–Otto (JKO)方案

JKO方案通过最小化能量和传输成本,定义了一个离散时间下的概率分布演化过程,能够同时捕捉数据的未归一化似然和从噪声到数据的流。

2025-04-17 19:23:50 305

原创 什么是Boltzmann分布(玻尔兹曼分布)?

Boltzmann分布的核心思想是将概率与能量联系起来:能量越低的状态,出现的概率越高。

2025-04-17 19:12:34 996

原创 PixelFlow:像素空间生成模型的新范式(代码实现)

《PixelFlow: Pixel-Space Generative Models with Flow》

2025-04-17 18:36:45 1199

原创 NaViT:Vision Transformer的灵活分辨率与高效训练新范式

《Patch n' Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution》

2025-04-17 16:48:17 801

原创 探索Transformer中的注意力沉没(attention sink)现象:为何LLMs偏爱首token?

《Why do LLMs attend to the first token?》

2025-04-16 21:11:29 757

原创 语言生成建模为Token级 Markov 决策过程(Token-Level MDP)详解

Markov 决策过程(MDP)是一种数学框架,用于建模序列决策问题,特别适合描述智能体(agent)与环境(environment)交互并通过学习策略(policy)最大化累积奖励(cumulative reward)的场景。MDP 的核心假设是马尔可夫性,即未来的状态和奖励仅依赖于当前状态和动作,而与历史无关。

2025-04-16 15:03:03 290

原创 ByteDance Seed团队提出VAPO:高效解决长链推理任务的强化学习框架

VAPO(Value-based Augmented Proximal Policy Optimization)

2025-04-16 14:49:46 1229

原创 保罗·格雷厄姆(Paul Graham)创业哲学与人生思考深度报告

本报告将全面梳理保罗·格雷厄姆的创业理念、人生思考、教育理念和写作方法,引用其英文原文材料(包括官方网站文章和其在X平台上的言论)予以佐证。

2025-04-16 13:55:27 933

原创 ByteDance Seed团队:解锁PPO在长链思考任务中的潜力——VC-PPO的创新突破(一):原理介绍

《What's Behind PPO's Collapse in Long-CoT? Value Optimization Holds the Secret》

2025-04-14 18:00:53 854

原创 ByteDance Seed团队:Value-Calibrated Proximal Policy Optimization (VC-PPO)(二)代码实现

解决Long-COT的问题,代码实现

2025-04-14 17:58:17 722

原创 MATH-SHEPHERD:无需人工标注的数学推理过程监督新方法(Step-by-step-PPO代码)

MATH-SHEPHERD通过自动化的过程监督数据构建框架,突破了PRM训练对人工标注的依赖,为数学推理任务提供了高效、强大的解决方案。

2025-04-13 20:41:12 1070

原创 Attention with Linear Biases (ALiBi)方法介绍:提升Transformer外推能力的创新方法

2022年ICLR会议上发表的论文《Train Short, Test Long: Attention with Linear Biases Enables Input Length Extrapolation》提出了一种简单而高效的方法显著提升了Transformer在长序列上的外推能力。本文将详细介绍ALiBi的核心方法、其为何能提高外推能力,以及后续工作如何进一步优化这一能力。

2025-04-12 21:36:18 1112

原创 技术论文中‘Respect’的含义与用法解析

在技术论文中,“respect” 是一个高频且重要的术语,承载了“遵循”“考虑”“维护”等含义,广泛应用于描述算法如何处理数据特性或约束。

2025-04-12 19:41:00 670

原创 困惑度(Perplexity,简称PPL)在自然语言处理中的全面解析

困惑度(Perplexity,简称PPL)是自然语言处理(NLP)和大语言模型(LLM)领域中常用的评估指标,用于衡量语言模型对文本的建模能力。通俗来说,困惑度反映了模型在预测下一个词时的“困惑”程度:困惑度越低,说明模型对文本的预测越准确,建模能力越强。

2025-04-12 19:26:34 663

原创 写给计算机系同学的李群与李代数系列博客:李群与李代数入门到进阶

通过6篇博客,从基础概念到复杂应用,系统介绍李群和李代数的理论、推导和应用,适合计算机系研究生学习和理解。

2025-04-12 14:23:31 950

原创 写给计算机系同学的李群与李代数(六):李群与李代数在计算机中的应用

我们将聚焦于李群与李代数如何解决实际问题,涵盖计算机图形学(Computer Graphics)、机器人学(Robotics)和机器学习(Machine Learning)。通过公式推导、具体例子和直观解释,我们将展示这些理论如何转化为高效的算法和优雅的解决方案。

2025-04-12 14:18:17 824

原创 写给计算机系同学的李群与李代数(五):最大阿贝尔子代数与李代数的分解

我们将聚焦于李代数的一个重要子结构——最大阿贝尔子代数(Maximal Abelian Subalgebra, MASA),并探讨它在分解李代数中的作用。

2025-04-12 14:10:34 979

原创 写给计算机系同学的李群与李代数(四):李括号与结构常数

我们将深入探讨李代数的“心脏”——李括号(Lie Bracket),并引入结构常数(Structure Constants),揭示李代数的代数结构。通过公式推导、具体例子和几何解释,我们将展示李括号如何描述变换的非交换性,以及结构常数如何量化李代数的“形状”,为计算机科学中的应用奠定基础。

2025-04-12 14:02:13 803

原创 写给计算机系同学的李群与李代数(三):矩阵指数与李群-李代数对应

我们将聚焦于矩阵指数映射(Matrix Exponential),它是连接李群与李代数的桥梁。通过公式推导、具体例子和几何解释,我们将揭示李代数如何生成李群元素,以及这种对应在计算机科学中的重要性。

2025-04-12 13:53:20 873

原创 苹果公司(Apple Inc.)商业模式及发展历程分析

本报告将全面剖析苹果公司的商业模式及其发展历程。从苹果商业模式的构成、演变路径与核心竞争力入手,深入探讨苹果各核心业务板块(如iPhone、Mac、iPad、Apple Watch以及服务业务)的产品特点、市场表现与增长趋势。此外,报告重点关注苹果在人工智能领域的最新战略布局,包括2024-2025年的AI产品创新、技术投资、开源政策与对外合作,并介绍苹果旗下研究机构(如Apple AI/ML Research等)的角色与成果。

2025-04-12 13:11:20 1211

原创 写给计算机系同学的李群与李代数(二):李代数的结构——以 so(n) 为例

我们将深入探讨李代数的结构,重点聚焦于特殊正交群 SO(n) 的李代数 so(n),即由反对称矩阵(Skew-Symmetric Matrix)构成的向量空间。我们会通过公式推导、具体例子和几何解释,帮助你理解李代数的代数性质,以及它为何在计算机科学中如此重要。

2025-04-11 21:56:11 944

原创 写给计算机系同学的李群与李代数(一):从旋转矩阵到抽象群

本篇博客将带你从熟悉的旋转矩阵出发,逐步走进李群和李代数的世界,揭开它们的神秘面纱。我们会通过公式、推导和例子,结合几何意义和直观解释,帮助你建立对这些概念的初步认识。

2025-04-11 21:39:32 914

原创 深入解析相对位置编码:从Transformer到Relative Position Representations

2018年,Peter Shaw等人在论文《Self-Attention with Relative Position Representations》中首次提出了相对位置编码(Relative Position Representations)的概念,为Transformer引入了一种更灵活、更高效的位置信息建模方式。

2025-04-11 18:18:40 675

原创 为什么RNN模型不需要位置编码?

RNN模型不需要显式位置编码的核心原因在于其递归结构天然能够捕捉序列的顺序信息。

2025-04-11 17:00:26 655

原创 美国创业孵化器Y Combinator(YC)深度报告

本报告深入介绍美国创业孵化器Y Combinator(简称YC)的创立背景、发展历程、孵化模式、投资机制、代表性创业公司、市场价值、全球影响力以及历任掌门人的作用。

2025-04-11 14:32:45 632

原创 30个英文网络俚语或缩写:在TikTok、YouTube、X(Twitter)等平台广泛所流行

在年轻群体及受黑人英语(AAVE)影响的语境中经常使用

2025-04-10 20:11:53 350

原创 深入理解 黎曼几何(Riemannian geometry):从流形(Manifold)到测地线 (geodesic)

Riemannian 几何用流形 M和度量g描述弯曲空间,切空间定义方向,测地线和指数映射提供“直线”和“导航”。对于常曲率流形如 Poincaré 球和超球面,这些工具让概率建模更贴合数据的内在几何。

2025-04-09 22:45:57 394

原创 Riemannian continuous normalizing flows的背景知识:什么是常曲率流形?从Poincaré盘(庞加莱圆盘)到球面

流形的关键在于,它有自己的几何规则(比如如何定义距离和方向),这些规则由“度量”(metric)决定。而“常曲率流形”是指曲率在整个流形上都一样的特殊流形。曲率是什么?可以理解为空间“弯曲程度”的度量,类似你在不同表面上滚小球时感受到的阻力变化。

2025-04-09 21:11:51 926

原创 亚马逊(Amazon)商业模式与发展历程深度分析

4万多字的报告

2025-04-09 18:19:57 1139

原创 经典音乐会与歌剧产业发展历程与现状深度报告

经典音乐会与歌剧产业作为文化演出行业的重要组成部分,在不同地区的发展历程与现状各具特色。本报告聚焦北美、欧洲和中国三大区域,深入分析以百老汇(Broadway)、伦敦西区(West End)等音乐剧中心,以及维也纳国家歌剧院(Vienna State Opera)、纽约大都会歌剧院(The Metropolitan Opera)等顶级歌剧院为代表的演出机构的发展轨迹与现状。

2025-04-09 17:16:11 667

原创 环球影城(Universal Studios)全球发展与业务分析报告

环球影城(Universal Studios)是全球知名的主题乐园品牌之一,其母公司为美国康卡斯特(Comcast)旗下的NBC环球(NBCUniversal)。“环球影城”最初源于好莱坞电影制片厂的公众参观活动,经过一个多世纪的发展,如今已在全球多地建立大型主题公园,并成为仅次于迪士尼的世界第二大主题公园品牌

2025-04-09 15:08:39 1377

原创 全球六大迪士尼乐园发展深度报告

迪士尼主题乐园业务作为华特迪士尼公司最具标志性的板块之一,经过数十年的发展,已在全球形成了六大度假区版图,分别位于美国加州、美国佛罗里达、法国巴黎、日本东京、中国香港和中国上海。

2025-04-09 14:43:48 1499

原创 日本动漫产业发展深度分析报告(2024–2025)

全文4万多字

2025-04-09 14:14:21 898 1

李永乐线代强化笔记2020年.rar

李老师对出题形式、考试重点了如指掌,解题思路极其灵活,辅导针对性极强,效果优良,成绩显著,受到广大学员的交口称赞!这是笔者自己的笔记,整理成pdf版,方便大家复习使用。

2020-10-27

李永乐线代基础班笔记.zip

李永乐线性代数基础班笔记2020年。用过了都说好!好在思路与题型的延伸方面。举一反三(举一反N也不夸张)

2020-09-13

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除