算法| ss 滑动窗口

本文介绍了五道编程题目,涉及无重复字符的最长子串、长度最小子数组、书店老板生气问题、水果成篮、删除子数组最大得分等,所有问题都使用了滑动窗口或类似策略,展示了在IT技术中如何用数据结构和算法解决数组和字符串相关问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

  • 3.无重复字符的最长子串
  • 209.长度最小的子数组
  • 1052.爱生气的书店老板
  • 904.水果成篮
  • 1695.删除子数组的最大得分
  • 1004.最大连续1的个数 III
  • 1438.绝对差不超过限制的最长连续子数组

3.无重复字符的最长子串

/**
 * @param {string} s
 * @return {number}
 */
// 思路
// 滑窗三问三答
// 右指针是谁
// 左指针什么时候移动 偏爱while循环
// 结果更新
var lengthOfLongestSubstring = function (s) {
  let len = 0;
  let left = 0;
  const sets = new Set();
  for (let right = 0; right < s.length; right++) {
    let ch = s[right];
    while (sets.has(ch)) {
      let leftch = s[left];
      sets.delete(leftch);
      left += 1;
    }
    sets.add(ch);
    len = Math.max(len, right - left + 1);
  }
  //   console.log(len);
  return len;
};
lengthOfLongestSubstring("abcabcbb");

209.长度最小的子数组

/**
 * @param {number} target
 * @param {number[]} nums
 * @return {number}
 */
// 思路
// 三问三答
// for  while循环
// 相等时更新最小值
// 是大于等于 不是等于
var minSubArrayLen = function (target, nums) {
  let minLen = Infinity;
  let left = 0;
  let sum = 0;
  for (let right = 0; right < nums.length; right++) {
    let ch = nums[right];
    sum += ch;
    while (sum >= target && left <= right) {
      let leftCh = nums[left];
      minLen = Math.min(minLen, right - left + 1);
      sum -= leftCh;
      left += 1;
    }
  }
  //   console.log(minLen);
  return minLen === Infinity ? 0 : minLen;
};
// minSubArrayLen(7, [2, 3, 1, 2, 4, 3]);
// minSubArrayLen(4, [1, 4, 4]);
minSubArrayLen(11, [1, 2, 3, 4, 5]);

1052.爱生气的书店老板

/**
 * @param {number[]} customers
 * @param {number[]} grumpy
 * @param {number} minutes
 * @return {number}
 */
// 思路
// 先将不生气的时候的客户加起来, 再重置为0
// 对重置后的客户数组进行求 连续minutes 个数的最大值
var maxSatisfied = function (customers, grumpy, minutes) {
  let ans = 0;
  let n = customers.length;
  for (let i = 0; i < n; i++) {
    if (grumpy[i] === 0) {
      ans += customers[i];
      customers[i] = 0;
    }
  }
  //   [
  //     0, 0, 0, 2,
  //     0, 1, 0, 5
  //   ]
  let sum = 0;
  let max = 0;
  for (let i = 0; i < n; i++) {
    sum += customers[i];
    if (i >= minutes) {
      sum -= customers[i - minutes];
    }
    max = Math.max(max, sum);
  }
  console.log(max);
  console.log(ans + max);
  console.log(customers);
  return ans + max;
};
// maxSatisfied([1, 0, 1, 2, 1, 1, 7, 5], [0, 1, 0, 1, 0, 1, 0, 1], 3);
maxSatisfied([9, 10, 4, 5], [1, 0, 1, 1], 1);
// customers = [1,0,1,2,1,1,7,5], grumpy = [0,1,0,1,0,1,0,1], minutes = 3

904. 水果成篮

/**
 * @param {number[]} fruits
 * @return {number}
 */
// 思路
// 滑动窗口解决
// for循环遍历 hash统计
// while循环 查看key的数量是否超过了2,如果超过,哈希统计更新。 左指针右移
// 更新答案
var totalFruit = function (fruits) {
  let ans = 0;
  let left = 0;
  const map = {};
  for (let right = 0; right < fruits.length; right++) {
    let ch = fruits[right];
    map[ch] = (map[ch] ?? 0) + 1;
    while (Object.keys(map).length > 2) {
      let leftCh = fruits[left];
      map[leftCh] -= 1;
      if (map[leftCh] === 0) delete map[leftCh];
      left += 1;
    }
    ans = Math.max(ans, right - left + 1);
  }
  console.log(ans);
  return ans;
};
totalFruit([0, 1, 2, 2]);

// 输入:fruits = [0,1,2,2]
// 输出:3
// 解释:可以采摘 [1,2,2] 这三棵树。

1695. 删除子数组的最大得分

/**
 * @param {number[]} nums
 * @return {number}
 */
// 思路
// 滑窗3步曲解决
// 使用Set进行统计
var maximumUniqueSubarray = function (nums) {
  let left = 0;
  let sets = new Set();
  let sum = 0;
  let ans = 0;
  for (let right = 0; right < nums.length; right++) {
    sum += nums[right];
    while (sets.has(nums[right])) {
      sum -= nums[left];
      sets.delete(nums[left]);
      left += 1;
    }
    sets.add(nums[right]);
    ans = Math.max(ans, sum);
  }
  console.log(ans);
  return ans;
};
maximumUniqueSubarray([4, 2, 4, 5, 6]);

// 输入:nums = [4,2,4,5,6]
// 输出:17
// 解释:最优子数组是 [2,4,5,6]

1004.最大连续1的个数 III

/**
 * @param {number[]} nums
 * @param {number} k
 * @return {number}
 */
// 思路 滑动窗口
// 右边元素是什么
// 满足什么条件 左指针移动
// 更新结果
var longestOnes = function (nums, k) {
  let left = 0;
  let ans = 0;
  for (let right = 0; right < nums.length; right++) {
    let ch = nums[right];
    if (ch === 0) {
      k--;
    }
    while (k < 0) {
      if (nums[left] === 0) k++;
      left += 1;
    }
    ans = Math.max(ans, right - left + 1);
  }
  console.log(ans);
  return ans;
};
longestOnes([1, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0], 2);
longestOnes([0, 0, 1, 1, 0, 0, 1, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1], 3);
// 输入:nums = [1,1,1,0,0,0,1,1,1,1,0], K = 2
// 输出:6

1438.绝对差不超过限制的最长连续子数组

/**
 * @param {number[]} nums
 * @param {number} limit
 * @return {number}
 */
// 思路 单调栈+滑动窗口
// 这题挺费解的
var longestSubarray = function (nums, limit) {
  const maxQueue = [];
  const minQueue = [];
  const len = nums.length;
  let left = 0;
  let ans = 1;
  for (let i = 0; i < len; i++) {
    const val = nums[i];
    while (maxQueue.length && val >= nums[maxQueue[maxQueue.length - 1]])
      maxQueue.pop();
    while (minQueue.length && val <= nums[minQueue[minQueue.length - 1]])
      minQueue.pop();
    maxQueue.push(i);
    minQueue.push(i);
    console.log("maxQueue", maxQueue);
    console.log("minQueue", minQueue);
    if (maxQueue.length && nums[maxQueue[0]] - nums[minQueue[0]] <= limit) {
      ans = Math.max(ans, i - left + 1);
    } else {
      while (nums[maxQueue[0]] - nums[minQueue[0]] > limit) {
        if (val === nums[minQueue[0]]) {
          left = maxQueue.shift();
        } else {
          left = minQueue.shift();
        }
      }
      left += 1;
    }
  }
  console.log(ans);
};

longestSubarray([8, 2, 4, 7], 4);
// 输入:nums = [8,2,4,7], limit = 4
// 输出:2
<think>好的,我现在需要回答用户的问题:“滑动窗口机制需要人为编写吗”。首先,我得理解用户的问题是什么。用户可能想知道在编程或网络协议实现中,是否需要自己手动编写滑动窗口的代码,或者这是否由底层协议自动处理。 首先,我要明确滑动窗口机制是属于TCP协议的一部分,主要用于流量控制和可靠传输。根据之前的知识,TCP协议的实现通常内置于操作系统内核中,比如在Linux的TCP/IP协议栈里。因此,对于大多数应用层开发者来说,不需要自己实现滑动窗口机制,而是由操作系统或网络库自动处理。 接下来,用户可能想知道是否存在需要手动处理滑动窗口的情况。比如,在某些特殊应用场景下,比如自定义传输协议,或者需要优化TCP性能时,可能需要调整滑动窗口的参数,但并不是从头编写整个机制。此外,应用层开发者可能需要通过系统调用或API设置窗口大小,比如调整TCP窗口缩放因子,但这属于配置而非编写机制本身。 然后,我需要考虑不同层面的开发情况。对于内核开发者来说,他们可能需要修改或优化TCP协议栈中的滑动窗口实现,但这是非常底层的操作,普通应用开发者不会涉及。而应用层开发者通常通过socket API进行网络编程,滑动窗口的细节被抽象掉了,不需要人为干预。 另外,用户可能有误解,以为在应用层编程时需要自己处理滑动窗口,比如在实现文件传输或实时通信时。这时候需要澄清,TCP已经自动处理了滑动窗口,应用只需处理数据的发送和接收即可。但如果有特殊需求,比如使用UDP并实现可靠传输,那么可能需要自己实现类似滑动窗口的机制,这时候就需要编写代码来管理窗口大小、确认、重传等,但这属于自定义协议的情况。 还需要注意术语的准确性,滑动窗口是TCP的机制,其他协议如QUIC可能也有类似机制,但具体实现可能不同。此外,用户可能将滑动窗口与拥塞控制混淆,需要指出两者的区别,但都属于TCP内部机制,无需应用层处理。 总结回答的结构应该是:首先明确滑动窗口是TCP内置机制,通常不需要人为编写;然后讨论特殊情况,如自定义协议或参数调整;最后总结应用开发者通常不需要干预,但了解机制有助于优化。</think>--- TCP协议中的**滑动窗口机制不需要应用开发者手动编写**,它由**操作系统内核的TCP/IP协议栈自动实现**。但理解其原理对优化网络性能至关重要。具体分以下情况说明: --- ### 一、常规应用开发:完全自动处理 ✅ | 场景 | 开发者角色 | 是否需要干预 | |-----|----------|------------| | 使用标准TCP协议(如HTTP、FTP) | 应用层开发者 | **无需编写**<br>(操作系统内核自动管理滑动窗口| | 调用Socket API收发数据 | 网络编程开发者 | **无需干预**<br>(通过`send()`/`recv()`操作,内核处理窗口调整、ACK确认、重传等细节) | | 使用高层框架(如gRPC、WebSocket) | 后端开发者 | **完全透明**<br>(框架底层封装了TCP通信) | **示例**: 当Java程序调用`OutputStream.write()`发送数据时: ```java // 开发者只需关注数据写入,滑动窗口由JVM和操作系统处理 socket.getOutputStream().write(data); ``` --- ### 二、需要人工干预的特殊场景 🔧 #### 1. 调整滑动窗口参数 - **窗口大小优化**:通过系统调用修改默认窗口大小(需root权限): ```bash # Linux中设置TCP接收窗口最大值 sysctl -w net.core.rmem_max=16777216 ``` - **启用窗口缩放**(Window Scaling): 在高速网络(如10Gbps)中,需启用RFC 1323的窗口缩放选项,突破65535字节限制: ```bash sysctl -w net.ipv4.tcp_window_scaling=1 ``` #### 2. 自定义可靠传输协议 若**基于UDP实现可靠传输**(如QUIC、游戏网络协议),需手动实现类滑动窗口逻辑: ```python # 伪代码示例:简易滑动窗口管理 class CustomSlidingWindow: def __init__(self, window_size=4): self.window_size = window_size self.send_buffer = {} # 存储已发送未确认的数据包 self.next_seq = 0 # 下一个待发送序号 def send_packets(self): while len(self.send_buffer) < self.window_size: send_packet(self.next_seq) self.send_buffer[self.next_seq] = time.time() self.next_seq += 1 def handle_ack(self, ack_seq): if ack_seq in self.send_buffer: del self.send_buffer[ack_seq] self.send_packets() # 滑动窗口,继续发送新数据 ``` #### 3. 内核/协议栈开发 操作系统开发者修改TCP实现时,需直接操作滑动窗口逻辑(如Linux内核源码): ```c // Linux内核中滑动窗口相关代码片段(net/ipv4/tcp_input.c) static void tcp_rcv_rtt_measure_ts(struct sock *sk, u32 seq) { struct tcp_sock *tp = tcp_sk(sk); u32 delta = tcp_time_stamp - tp->rx_opt.rcv_tsecr; if (tcp_dupack_heuristics(tp) > TCP_RESERVED_BYTES) tcp_update_rtt(sk, delta, 0); } ``` --- ### 三、为什么普通开发者无需编写滑动窗口? 🛠️ 1. **协议栈封装性** TCP作为传输层协议,其可靠性机制(滑动窗口、超时重传、拥塞控制)已由操作系统实现,对应用层暴露的是流式接口。 2. **跨平台一致性** 不同操作系统(Windows/Linux/macOS)的TCP实现细节不同,但通过标准Socket API提供统一抽象。 3. **性能优化自动化** 现代操作系统能动态调整窗口大小: - 根据RTT(往返时间)和带宽延迟积自动计算最优窗口 - 通过`TCP_NOTSENT_LOWAT`等选项减少缓冲区占用 --- ### 四、开发者应注意的相关问题 ⚠️ 1. **缓冲区设置不当导致性能下降** ```java // 错误示例:设置过小的Socket缓冲区 Socket socket = new Socket(); socket.setReceiveBufferSize(2048); // 太小可能限制窗口增长 ``` 2. **Nagle算法滑动窗口的交互** 合并小数据包可能增加延迟,需根据场景选择启用/禁用: ```python # Python中关闭Nagle算法 sock.setsockopt(socket.IPPROTO_TCP, socket.TCP_NODELAY, 1) ``` 3. **监控窗口状态** 使用`ss -ti`命令观察连接的窗口动态(Linux): ```bash ss -ti | grep "rtt:.*rcv_wnd" # 输出示例:rcv_wnd:16384 cwnd:10 表示接收窗口16KB,拥塞窗口10个MSS ``` --- ### 五、总结:何时需要关注滑动窗口| 开发层级 | 是否需要处理滑动窗口 | 典型场景 | |---------|---------------------|---------| | **应用层开发** | 无需处理 | Web服务、移动App后端 | | **协议优化** | 需调整参数 | 高性能计算、视频流服务器 | | **传输协议开发** | 需完整实现 | 自定义可靠UDP协议、新型网络协议设计 | | **内核开发** | 直接修改源码 | 操作系统TCP/IP协议栈优化 | 对于大多数开发者,**只需理解滑动窗口原理**,通过合理设置缓冲区大小、选择TCP参数优化性能即可,无需手动实现这一机制。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值