机器学习的stacking方法和原始论文来源

之前学习机器学习部分,对stacking和ensembling只是听过一遍,没有实操因此理解不深。这次重新过一遍:

1、http://blog.kaggle.com/2017/06/15/stacking-made-easy-an-introduction-to-stacknet-by-competitions-grandmaster-marios-michailidis-kazanova/  原始blog,解释很清晰

2、https://www.kaggle.com/serigne/stacked-regressions-top-4-on-leaderboard  对原理和使用方法很有借鉴

3、https://github.com/kaz-Anova/StackNet  kazanova的博士论文成果,stacking的起源实现

 

准备安装好StackNet环境,把examples都运行一遍,彻底搞懂stacking

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值