hdu 1937 Finding Seats 尺取法

这道题主要就是选一个对角矩阵,使得其内的可用座位》=k,求满足这个条件的最小矩阵面积

三重循环加优化,最内层为尺取法,复杂度大概为300;

故空间复杂度为300^3,不会超时,同时第三层内的搜索与判断都应为加法级别的;

第一次打的时候判断一个区域内的可用座位是暴力搜索,最麻烦的时候复杂度达到300^5,。。超时

看了其他人的代码才明白;

先进行一个对矩阵内可用座位的预处理,复杂度为300^2;

故代码的复杂度可理解为300^3+300^2,比我都300^3*300^2快的不是一个级别

代码:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;
const int INF=1<<31-1;
char a[310][310];
int mmap[310][310];
int r,c,k;
void chuli()
{
    int i,j;
    for(i=1;i<=r;i++)
        mmap[i][1]=(a[i][1]=='.');
    for(j=1;j<=c;j++)
        mmap[1][j]=(a[1][j]=='.');
    for(i=1;i<=r;i++)
    {
        for(j=1;j<=c;j++)
        {
            mmap[i][j]=(mmap[i-1][j]+mmap[i][j-1]-mmap[i-1][j-1]+(a[i][j]=='.'));
        }
    }
}
int check(int x1,int y1,int x2,int y2)
{
    if(mmap[x2][y2]+mmap[x1-1][y1-1]-mmap[x1-1][y2]-mmap[x2][y1-1]>=k)
        return 0;
    else
        return 1;
}
int main()
{
    while(scanf("%d%d%d",&r,&c,&k)!=EOF)
    {
        memset(mmap,0,sizeof(mmap));
        if(r==c&&r==k&&k==0)
        {
            break;
        }
        int i,j;
        for(i=1;i<=r;i++)
             scanf("%s",a[i]+1);
        chuli();
        int t1,t2;
        int min=INF;

        for(i=1;i<=r;i++)
        {
            for(j=i;j<=r;j++)
            {
                for(t1=1,t2=1;t1<=c;t1++)
                {
                    while(check(i,t1,j,t2)==1&&t2<c)
                       {
                           t2++;
                       }
                    if(check(i,t1,j,t2)==0)
                    {
                        if(min>(j-i+1)*(t2-t1+1))
                        min=(j-i+1)*(t2-t1+1);
                    }
                }
            }
        }
        printf("%d\n",min);
    }
    return 0;
}



阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/sholck222/article/details/47061449
文章标签: c++ hdu 算法 尺取法
个人分类: 算法
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭