在本篇文章中,我们将综合前面文章中所有知识,创建一个端到端的客户服务助理示例。我们将经历以下步骤:
首先,我们将通过Moderation API检查输入是否违规。
其次,如果没有,我们将提取产品列表。
第三,如果找到产品信息,我们将尝试查找它们。
第四,我们用模型回答用户的问题。
第五,我们将通过Moderation API对答案进行审核。如果回答没有违规,我们可以把它返回给用户。
第六,对模型的回答进行质量评估
示例代码:
def process_user_message(user_input, all_messages, debug=True):
delimiter = "```"
# Step 1: Check input to see if it flags the Moderation API or is a prompt injection
response = openai.Moderation.create(input=user_input)
moderation_output = response["results"][0]
if moderation_output["flagged"]:
print("Step 1: Input flagged by Moderation API.")
return "Sorry, we cannot process this request."
if debug: print("Step 1: Input passed moderation check.")
category_and_product_response = utils.find_category_and_product_only(user_input, utils.get_products_and_category())
#print(print(category_and_product_response)
# Step 2: Extract the list of products
category_and_product_list = utils.read_string_to_list(category_and_product_response)
#print(category_and_product_list)
if debug: print("Step 2: Extracted list of products.")
# Step 3: If products are found, look them up
product_information = utils.generate_output_string(category_and_product_list)
if debug: print("Step 3: Looked up product information.")
# Step 4: Answer the user question
system_message = f"""
You are a customer service assistant for a large electronic store. \
Respond in a friendly and helpful tone, with concise answers. \
Make sure to ask the user relevant follow-up questions.
"""
messages = [
{'role': 'system', 'content': system_message},
{'role': 'user', 'content': f"{delimiter}{user_input}{delimiter}"},
{'role': 'assistant', 'content': f"Relevant product information:\n{product_information}"}
]
final_response = get_completion_from_messages(all_messages + messages)
if debug:print("Step 4: Generated response to user question.")
all_messages = all_messages + messages[1:]
# Step 5: Put the answer through the Moderation API
response = openai.Moderation.create(input=final_response)
moderation_output = response["results"][0]
if moderation_output["flagged"]:
if debug: print("Step 5: Response flagged by Moderation API.")
return "Sorry, we cannot provide this information."
if debug: print("Step 5: Response passed moderation check.")
# Step 6: Ask the model if the response answers the initial user query well
user_message = f"""
Customer message: {delimiter}{user_input}{delimiter}
Agent response: {delimiter}{final_response}{delimiter}
Does the response sufficiently answer the question?
"""
messages = [
{'role': 'system', 'content': system_message},
{'role': 'user', 'content': user_message}
]
evaluation_response = get_completion_from_messages(messages)
if debug: print("Step 6: Model evaluated the response.")
# Step 7: If yes, use this answer; if not, say that you will connect the user to a human
if "Y" in evaluation_response: # Using "in" instead of "==" to be safer for model output variation (e.g., "Y." or "Yes")
if debug: print("Step 7: Model approved the response.")
return final_response, all_messages
else:
if debug: print("Step 7: Model disapproved the response.")
neg_str = "I'm unable to provide the information you're looking for. I'll connect you with a human representative for further assistance."
return neg_str, all_messages
user_input = "tell me about the smartx pro phone and the fotosnap camera, the dslr one. Also what tell me about your tvs"
response,_ = process_user_message(user_input,[])
print(response)
上面的示例代码中,我们正在按步骤回答用户问题。第一步是审核输入,第二步是提取产品列表。第三步是查询产品信息。
当有了产品信息,模型则根据产品信息回答用户的问题。最后,它将回答再次给到Moderation API,以确保可以安全地显示给用户。
当然,这里也添加了让模型去评估回答质量的功能。
这些是我们之前文章知识的一个汇总。
提取产品信息的辅助函数utils.find_category_and_product_only
, utils.read_string_to_list
和utils.generate_output_string
这里没有列出来。可以在公众号《首飞》内输入“api”查看到完整的源码。
参考:
https://learn.deeplearning.ai/chatgpt-building-system/lesson/8/evaluation
觉得有用就点个赞吧!
我是首飞,一个帮大家填坑的工程师。