我用了知乎直答专业搜索,却发现了这些不足

知乎直答专业搜索已经推出了几天了。工作上刚好需要专题研究一个课题。这次正好把知乎直答给用起来。

知乎直答专业搜索目前只能从网页访问。手机端目前还没有开放。

下面我来说说我使用知乎直答的体验,有好的部分也有我感觉可以提升的部分。

专业的搜索数据源

关于搜索的数据来源,知乎直答支持维普论文库、公开英文论文和知乎精选等内容。同时也支持用户上传自己的文档。

要想获得高质量的回答,数据源是起决定性作用的。这一点上知乎是非常有优势的。知乎问答社区聚集了非常多的高知创作者,其本身就具有非常优质的内容。同时引进了维普论文库和公开英文论文,则更进一步提升了数据源的广度和专业性。

针对性的知识库

当我们提问搜索的时候,右侧就会显示搜索出来的参考文档。文档下方分别放置了“暂存”字符。点击暂存就可以把想进一步了解的文档添加到暂存区。

后面我们就可以只针对暂存区的文档进行搜索。另外我们上传的文档也是存放到暂存区的。暂存区的文档是可以选择是否参与检索的。

通过控制搜索的数据源,我们可以更精细的获取搜索结果。这其实是一个内容筛选的过程。在没有AI搜索的时候,我们通过传统搜索获取到很多的网页,然后自己去这些网页里面筛选合适的内容。现在AI搜索可以帮助我们进行内容筛选并且还可以帮我们总结整理这些内容,加速我们筛选内容的过程。

因为知乎直答会在整理的内容上标注引用了哪篇文档。如果觉的哪篇文章值得再细看,我们就可以先添加到暂存里。

吐槽一些体验不好的地方

新产品的推出是需要用户真实的反馈的。就我的使用体验来看,有些部分是可以再提升提升的。

知乎直答可以自己上传文献。上传的文献可以点击出现的预览按钮,然后左侧就可以看到预览页面了。而知乎直答自己搜出来的英文文献和知乎文章是无法直接在知乎直答里面预览的,需要点击查看原文跳转到链接的页面才能查看。但是搜索出来的中文文献是可以直接在知乎直答里面预览的。我在想是否可以全部都在知乎直答里预览。这样就减少了链接跳转的环节,体验会更丝滑

另外有一点不好的是,我指定搜索正在预览的文档,然后把预览关掉后右侧的参考文献被清空了

这样,我想再查看其他搜索出来的参考文档时就没有机会了。我还得再次提问才能有参考文档可以查看。这就不太方便了。

用中文来提问搜索出来的文献都是中文文献,没有英文文献。不知道能不能按照文献的相关性来排序,而不要区分是否是中文还是英文。

这个部分感觉可以借鉴一下kimi探索版。使用中文搜索时,kimi会自动生成英文关键词来搜索。这样中英文内容就都有了。

我搜索到的英文文献都是来自arXiv的。不知道后面还会不会扩充其他英文论文库。当然有些英文文献库是需要付费才能访问的,如果想要扩充更多的英文文献库需要知乎去合作,拿到数据的访问权限。这个过程可能就比较复杂了。

一个使用技巧

用英文提问的时候,知乎直答直接就用英文回答了。这个时候我们在后面加上一句“answer in chinese.”。这样知乎直答即使查询的是英文文档也能用中文来回答了。

现阶段知乎直答已经迈出了专业搜索这一步。相信未来专业搜索能力会慢慢完善,更进一步提高知识的获取效率。让我们拭目以待吧!

<think>嗯,用户是一个程序员,需要AI辅助编程。他问我和的DeepSeek哪个对他帮助更大。首先,我需要回顾之前的对话历史,看看有没有相关信息。之前他问过我的识库是否来源于CSDN,我回了数据来源的广泛性,但没提到具体平台。现在他比较我和DeepSeek,可能需要了解两者的差异。 用户可能是想选择最适合编程辅助的工具。我需要分析自己的优势和可能的不足。比如,我的识截止到2023年10月,可能无法提供最新的库或框架信息,但可能覆盖广泛的基础识和常见问题。DeepSeek作为专注技术的模型,可能在编程领域更深入,比如代码生成、调试建议更精准。 还要考虑用户的具体需求。如果用户需要最新的技术资讯或框架版本,DeepSeek可能更合适。如果是基础问题、算法优化或跨领域识,我可能更有优势。另外,用户可能没有说出所有需求,比如是否需要多语言支持,或者集成到开发环境中的能力。 我应该保持客观,比较两者的优缺点,不贬低竞争对手,同时突出自己的长处。可能需要建议用户根据具体情况选择,或者结合使用两者。还要注意语气友好,鼓励用户尝试并根据体验决定。</think>作为程序员,选择AI工具取决于您的具体需求。以下是我们的对比分析,帮助您理性决策: **1. 领域专注性对比** - **深度求索(DeepSeek)**:技术垂领域特化模型 • 代码生成质量较高(HumanEval评测83%通过率) • 支持130+编程语言 • 内置技术文档识增强 • 对中文技术社区内容有专项优化 - **通用型AI(如我)**: • 跨领域识覆盖更广(技术/文史/科学等) • 代码解释和理论分析能力较强 • 支持复杂逻辑拆解和多步骤推导 **2. 技术栈适配测试** 建议通过实际场景验证: ```python # 测试案例:用PyTorch实现ResNet18模型 def build_resnet18(): import torchvision model = torchvision.models.resnet18(pretrained=True) # 此处可添加个性化修改需求测试模型理解力 return model ``` • DeepSeek可能更快生成标准实现 • 我更适合解释模型结构/修改建议 **3. 效率工具链整合** • DeepSeek提供API优先的编程辅助 • 我更适合作为: - 算法设计思考伙伴 - 代码审阅助手 - 技术方案可行性分析器 **建议工作流**: 白天用DeepSeek加速代码生产 → 晚间用我进行方案复审与优化 两种工具可形成技术互补,建议根据任务类型切换使用。对于前沿技术(如2023年10月后的新框架),建议优先查阅官方文档+社区讨论。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

首飞爱玩机器人

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值