监督单目深度估计
文章平均质量分 86
韩十三*
重剑无锋 大巧不工
展开
-
用于密集预测的视觉转换器 Vision Transformers for Dense Prediction
我们提出了一种视觉转换器,一种利用视觉转换器代替卷积网络作为密集预测任务的骨干架构。本文将视觉转换器各个阶段的toker(翻译是令牌,但我感觉更像一个图像块)组装成各个分辨率的类图像表示,然后在解码器阶段进行组合,从而生成全分辨率预测。transformer采用恒定且相对较高的分辨率表示,并且在每个阶段都具有全局感受野。与全卷积网络相比,这些特征可以提供更细粒度和更全局连贯的预测。实验在深度估计和图像分割两个方向都产生了显著的效率提升。 目前几乎所有的密集预测框架都是基于卷积网络的编解码器结构,他们通原创 2022-06-16 17:14:29 · 1114 阅读 · 0 评论 -
基于分段平面性的单目深度估计 P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior
P3Depth: Monocular Depth Estimation with a Piecewise Planarity Prior面向可解释深度网络的单目深度估计0 Abstract 单目深度估计对于场景理解和后续任务至关重要,本文致力于改进监督方法,其中地面真值只在训练的时候使用。基于对真实3D场景高度规则性的了解,我们提出了一种学习有选择地利用共面像素信息来提升预测深度的方法。我们引入了一种分段平面性先验知识,即对于每个像素,有一个种子像素和前者共享相同的平面3D曲面。基于此,我们设计了一原创 2022-05-18 18:38:32 · 1339 阅读 · 0 评论