单目深度估计的评价指标

  目前评价单目深度估计最常用的量化指标是绝对相对差(AbsRel)、均方根误差(RMSE)、RMSE(log)和相对误差(SqRel)。以下为各量化指标的计算公式。

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述

在这里插入图片描述
  其中di是真实的深度信息,di* 为预测的深度值,在深度估计有有三个常用的阈值thr=1.25,1.252,1.253,在比较真实的深度di和预测的深度di*时,可以采用如下的方法。在这里插入图片描述
选取di/di* 和 di*/di两个之中的最大值,统计所有di中小于阈值thr的像素点所占总体像素点的白分比,越接近于1效果越好,所以阈值越大,即阈值为1.253所得到的结果要比阈值为1.25的结果要好。

<think>好的,我现在需要处理用户关于深度度量名称列表的问题。用户提到的度量包括abs_rel、sq_rel、rms、log_rms、a1、a2、a3,这些在计算机视觉或深度学习中常见。首先,我要确认这些度量具体指什么,通常它们用于深度估计任务,比如单目深度估计。 首先,逐个分析每个指标。abs_rel是绝对相对误差,计算预测深度和真实深度之间的绝对差异除以真实值,这样可以消除尺度影响。sq_rel是平方相对误差,对较大误差给予更高惩罚。rms是均方根误差,衡量预测值和真实值的整体差异。log_rms可能是在对数空间计算的rms,减少远距离误差的影响。 接下来是a1、a2、a3,这些是准确度指标,通常指预测深度与真实值的比例在特定阈值内的比例。比如a1是比例在1.25倍以内的百分比,a2是1.25²,a3是1.25³,阈值逐渐放宽,用来衡量不同严格程度下的准确率。 需要验证这些指标的标准定义,确保没有混淆。比如,查阅相关论文,如Eigen等人的工作,或者KITTI数据集的评估标准。确保每个缩写的全称正确,例如abs_rel是Absolute Relative Difference,sq_rel是Squared Relative Difference。 然后考虑用户可能的意图,他们可能在进行深度估计模型的评估,需要明确各个指标的计算方式和应用场景。同时,用户可能希望了解如何选择适合的指标,或者这些指标之间的优缺点。 需要确保回答的结构清晰,先列出每个度量的名称、全称和计算公式,再说明用途。同时,引用相关文献,比如引用KITTI基准或Eigen的论文来支持信息准确性。此外,生成的相关问题需要覆盖指标的应用、选择、优缺点以及实际数据集中的使用情况,帮助用户进一步探索。 最后,检查是否有遗漏的指标,或者是否有其他常见的深度估计指标未被提及,但根据用户提供的列表,主要关注abs_rel、sq_rel、rms、log_rms、a1、a2、a3这些,应集中在这些上面。</think>### 深度度量名称列表及其用途 在计算机视觉(特别是单目深度估计任务)中,常用的深度评估指标包括以下内容。这些指标主要用于衡量预测深度图与真实深度图之间的误差或一致性[^1][^3]: 1. **绝对相对误差(AbsRel, Absolute Relative Difference)** 公式: $$ \text{AbsRel} = \frac{1}{N} \sum_{i=1}^N \frac{|y_i - \hat{y}_i|}{y_i} $$ 用途:反映预测值与真实值的绝对比例误差,对深度值的绝对误差敏感。 2. **平方相对误差(SqRel, Squared Relative Difference)** 公式: $$ \text{SqRel} = \frac{1}{N} \sum_{i=1}^N \frac{|y_i - \hat{y}_i|^2}{y_i} $$ 用途:通过平方操作放大大误差的惩罚,适用于需要抑制极端误差的场景。 3. **均方根误差(RMS, Root Mean Squared Error)** 公式: $$ \text{RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^N (y_i - \hat{y}_i)^2} $$ 用途:衡量预测值与真实值的整体偏差,对离群点敏感。 4. **对数空间均方根误差(Log RMS)** 公式: $$ \text{Log RMS} = \sqrt{\frac{1}{N} \sum_{i=1}^N (\log y_i - \log \hat{y}_i)^2} $$ 用途:在深度值的对数空间计算误差,减少远距离区域的误差影响。 5. **阈值准确率(a1, a2, a3)** 公式: $$ \delta = \max\left(\frac{y_i}{\hat{y}_i}, \frac{\hat{y}_i}{y_i}\right) < \tau $$ 其中 $\tau$ 分别取 $1.25, 1.25^2, 1.25^3$,统计满足条件的像素比例。 用途:反映预测深度在特定比例范围内的准确性,常用于评估模型的鲁棒性。 --- ### 应用场景 - **AbsRel/SqRel**:适用于对局部误差敏感的自动驾驶场景(如KITTI数据集)[^2]。 - **阈值准确率**:用于评估深度预测的视觉一致性(如室内场景NYU Depth V2数据集)。 - **RMS/Log RMS**:常用于学术论文中的综合性能对比(如Eigen等人的深度估计工作)。 ---
评论 6
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值