神经网络与深度学习--课堂笔记(4)

文章介绍了循环神经网络(RNN)的基础知识,包括其在序列模型中的应用,如自回归模型和马尔可夫模型。此外,还详细阐述了RNN的训练过程,以及在文本预处理中的步骤,如词元化和构建词表。最后,提到了RNN在自然语言处理(NLP)任务中的重要应用。
摘要由CSDN通过智能技术生成

 课程老师:屈桢深老师

参考书籍:《动手学深度学习》

笔记主要内容:循环神经网络


一、序列模型

1.1统计工具

        自回归模型:其中包含两种策略,第一种策略是通过定义某个长度的时间跨度,即使用观测序列x_{t-1},...,x_{t-\tau }。第二种策略是保留一些对过去观测的总结h_{t},产生基于\widehat{x_{t}}=P(x_{t}|h_{t})估计x_{t},以及公式h_{t}=g(h_{t-1},x_{t-1})更新的模型。

         马尔可夫模型:在自回归模型的近似法中, 使用x_{t-1},...,x_{t-\tau }而不是x_{t-1},...,x_1来估计x_{t}。 只要这种是近似精确的,我们就说序列满足马尔可夫条件(Markov condition)。如果\tau =1,就会得到一个一阶马尔克夫模型,P(x)由下式给出:

P(x_1,...,x_{T})=\prod_{t=1}^{T}P(x_{t}|x_{t-1})

1.2训练

 

tau = 4
features = torch.zeros((T - tau, tau))
for i in range(tau):
    features[:, i] = x[i: T - tau + i]
labels = x[tau:].reshape((-1, 1))

batch_size, n_train = 16, 600
# 只有前n_train个样本用于训练
train_iter = d2l.load_array((features[:n_train], labels[:n_train]),
                            batch_size, is_train=True)

# 初始化网络权重的函数
def init_weights(m):
    if type(m) == nn.Linear:
        nn.init.xavier_uniform_(m.weight)

# 一个简单的多层感知机
def get_net():
    net = nn.Sequential(nn.Linear(4, 10),
                        nn.ReLU(),
                        nn.Linear(10, 1))
    net.apply(init_weights)
    return net

# 平方损失。注意:MSELoss计算平方误差时不带系数1/2
loss = nn.MSELoss(reduction='none')

def train(net, train_iter, loss, epochs, lr):
    trainer = torch.optim.Adam(net.parameters(), lr)
    for epoch in range(epochs):
        for X, y in train_iter:
            trainer.zero_grad()
            l = loss(net(X), y)
            l.sum().backward()
            trainer.step()
        print(f'epoch {epoch + 1}, '
              f'loss: {d2l.evaluate_loss(net, train_iter, loss):f}')

net = get_net()
train(net, train_iter, loss, 5, 0.01)

1.3 预测

二、文本预处理

         文本是一个经典的序列模型例子,一篇文章可以被简单地看作一串单词序列,甚至是一串字符序列。

2.1读取数据集

import collections
import re
from d2l import torch as d2l
#@save
d2l.DATA_HUB['time_machine'] = (d2l.DATA_URL + 'timemachine.txt',
                                '090b5e7e70c295757f55df93cb0a180b9691891a')

def read_time_machine():  #@save
    """将时间机器数据集加载到文本行的列表中"""
    with open(d2l.download('time_machine'), 'r') as f:
        lines = f.readlines()
    return [re.sub('[^A-Za-z]+', ' ', line).strip().lower() for line in lines]

lines = read_time_machine()
print(f'# 文本总行数: {len(lines)}')
print(lines[0])
print(lines[10])

2.2词元化

def tokenize(lines, token='word'):  #@save
    """将文本行拆分为单词或字符词元"""
    if token == 'word':
        return [line.split() for line in lines]
    elif token == 'char':
        return [list(line) for line in lines]
    else:
        print('错误:未知词元类型:' + token)

tokens = tokenize(lines)
for i in range(11):
    print(tokens[i])

2.3 词表

class Vocab:  #@save
    """文本词表"""
    def __init__(self, tokens=None, min_freq=0, reserved_tokens=None):
        if tokens is None:
            tokens = []
        if reserved_tokens is None:
            reserved_tokens = []
        # 按出现频率排序
        counter = count_corpus(tokens)
        self._token_freqs = sorted(counter.items(), key=lambda x: x[1],
                                   reverse=True)
        # 未知词元的索引为0
        self.idx_to_token = ['<unk>'] + reserved_tokens
        self.token_to_idx = {token: idx
                             for idx, token in enumerate(self.idx_to_token)}
        for token, freq in self._token_freqs:
            if freq < min_freq:
                break
            if token not in self.token_to_idx:
                self.idx_to_token.append(token)
                self.token_to_idx[token] = len(self.idx_to_token) - 1

    def __len__(self):
        return len(self.idx_to_token)

    def __getitem__(self, tokens):
        if not isinstance(tokens, (list, tuple)):
            return self.token_to_idx.get(tokens, self.unk)
        return [self.__getitem__(token) for token in tokens]

    def to_tokens(self, indices):
        if not isinstance(indices, (list, tuple)):
            return self.idx_to_token[indices]
        return [self.idx_to_token[index] for index in indices]

    @property
    def unk(self):  # 未知词元的索引为0
        return 0

    @property
    def token_freqs(self):
        return self._token_freqs

def count_corpus(tokens):  #@save
    """统计词元的频率"""
    # 这里的tokens是1D列表或2D列表
    if len(tokens) == 0 or isinstance(tokens[0], list):
        # 将词元列表展平成一个列表
        tokens = [token for line in tokens for token in line]
    return collections.Counter(tokens)

vocab = Vocab(tokens)
print(list(vocab.token_to_idx.items())[:10])

for i in [0, 10]:
    print('文本:', tokens[i])
    print('索引:', vocab[tokens[i]])

 三、循环神经网络

3.1结构及原理

         RNN背后的想法是利用顺序信息。RNN被称为"循环",因为它们对序列的每个元素执行相同的任务,输出取决于先前的计算。考虑RNN的另一种方式是它们有一个“记忆”,它可以捕获到目前为止计算的信息。理论上,RNN可以利用任意长序列中的信息,但实际上它们仅限于回顾几个步骤(稍后将详细介绍)。下雨是典型的RNN网络在某一时刻展开的样子:

        其中,x_{t}是输入层的输入,s_{t}是隐藏层的输出,o_{t}是输出层的输出。 循环神经网络的前向计算过程用公式表示如下:

o_{t}=g(V\cdot s_{t}+b_2)

s_{t}=f(U\cdot x_{t}+W\cdot s_{t-1}+b_1)

        通过两个公式的循环迭代,可以得到,当前时刻的输出包含了历史信息,这说明循环神经网络对历史信息进行了保存。

3.2应用领域

        RNN在NLP的许多任务上取得巨大成功。主要的应用领域有:

  • 语言建模与生成文本
  • 机器翻译
  • 语音识别
  • 生成图像描述

 

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 1
    评论
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值