贝叶斯决策理论总结(上)

基础

  1. 先验概率: p ( w 1 ) p(w_1) p(w1) p ( w 2 ) p(w_2) p(w2)
  2. 类条件概率: p ( x ∣ w 1 ) p(x|w_1) p(xw1) p ( x ∣ w 2 ) p(x|w_2) p(xw2)
  3. 后验概率: p ( w i ∣ x ) = p ( x ∣ w i ) p ( w 2 ) p ( x ) p(w_i|x)=\frac {p(x|w_i)p(w_2)}{p(x)} p(wix)=p(x)p(xwi)p(w2)
  4. 似然函数:
    l i k l i h o o d ( x ) = p ( x ∣ w 1 ) p ( x ∣ w 2 ) > p ( w 1 ) p ( w 2 ) , 则 表 示 x ∈ w 1 l i k l i h o o d ( x ) = p ( x ∣ w 1 ) p ( x ∣ w 2 ) < p ( w 1 ) p ( w 2 ) , 则 表 示 x ∈ w 2 liklihood(x)=\frac{p(x|w_1)}{p(x|w_2)}>\frac{p(w_1)}{p(w_2)},则表示x\in w_1 \\ liklihood(x)=\frac{p(x|w_1)}{p(x|w_2)}<\frac{p(w_1)}{p(w_2)},则表示x\in w_2 liklihood(x)=p(xw2)p(xw1)>p(w2)p(w1)xw1liklihood(x)=p(xw2)p(xw1)<p(w2)p(w1)xw2
    这种形式也可以表示为对数形式:
    h ( x ) = − l n l i k l i h o o d ( x ) = − l n p ( x ∣ w 1 ) + l n p ( x ∣ w 2 ) < l n p ( w 1 ) p ( w 2 ) , 则 表 示 x ∈ w 1 h ( x ) = − l n l i k l i h o o d ( x ) = − l n p ( x ∣ w 1 ) + l n p ( x ∣ w 2 ) > l n p ( w 1 ) p ( w 2 ) , 则 表 示 x ∈ w 2 h(x)=-lnliklihood(x)=-lnp(x|w_1)+lnp(x|w_2)<ln\frac{p(w_1)}{p(w_2)},则表示x\in w_1 \\ h(x)=-lnliklihood(x)=-lnp(x|w_1)+lnp(x|w_2)>ln\frac{p(w_1)}{p(w_2)},则表示x\in w_2 h(x)=lnliklihood(x)=lnp(xw1)+lnp(xw2)<lnp(w2)p(w1)xw1h(x)=lnliklihood(x)=lnp(xw1)+lnp(xw2)>lnp(w2)p(w1)xw2
    如果是二分类,则 p ( w 1 ∣ x ) + p ( w 2 ∣ x ) = 1 p(w_1|x)+p(w_2|x)=1 p(w1x)+p(w2x)=1,根据后验概率进行决策,这个过程就叫贝叶斯决策,其中 p ( x ) p(x) p(x)叫全概率。后验概率涉及一个具体的事物,而先验概率是泛指一类事物。
  5. 分类错误率 = 被错分的样本数 / 样本总数
    p ( e ) = ∫ p ( e , x ) d x = ∫ p ( e ∣ x ) p ( x ) d x p(e)=\int p(e,x)dx=\int p(e|x)p(x)dx p(e)=p(e,x)dx=p(ex)p(x)dx
    最小错误率可以写成:
    m i n p ( e ) = ∫ p ( e , x ) d x = ∫ p ( e ∣ x ) p ( x ) d x minp(e)=\int p(e,x)dx=\int p(e|x)p(x)dx minp(e)=p(e,x)dx=p(ex)p(x)dx
    错误率最小的决策就是使后验概率最大的决策。
  6. 损失函数 λ ( α i , w i ) \lambda (\alpha_i,w_i) λ(αi,wi) α i ∈ Ω \alpha_i \in \Omega αiΩ w i ∈ Υ w_i \in \Upsilon wiΥ Ω \Omega Ω是状态空间, Υ \Upsilon Υ是决策空间
  7. 条件期望损失:
    R ( a l p h a i ∣ x ) = E [ λ ( a l p h a i , w i ) ] = ∑ j = 1 c λ ( α i , w j ) p ( w j ∣ x ) R(alpha_i|x)=E[\lambda(alpha_i,w_i)]=\sum_{j=1}^c\lambda(\alpha_i,w_j)p(w_j|x) R(alphaix)=E[λ(alphai,wi)]=j=1cλ(αi,wj)p(wjx)
    表示样本 X X X采取某种决策 α \alpha α时的损失加权平均值,也叫条件风险。
  8. 期望风险: R = ∫ R ( α ( x ) ∣ x ) p ( x ) d x R=\int R(\alpha(x)|x)p(x)dx R=R(α(x)x)p(x)dx,反应了对整个特征空间所有X的取值都采用相应的决策所带来的风险。如果采用0-1损失函数时,最小错误贝叶斯决策就是最小风险贝叶斯决策。

贝叶斯分类器

贝叶斯分类器的分类原理是通过某对象的先验概率,利用贝叶斯公式计算出其后验概率,选择具有最大后验概率的类作为该对象所属的类。

  1. 贝叶斯分类器 = 判别函数 + 决策面
  2. 判别函数:定义 g i ( x ) g_i(x) gi(x) i i i表示类别,每一类都对应一个判别函数。如果对于一切 j ≠ i j\ne i j=i 都有 g i ( x ) > g j ( x ) g_i(x)>g_j(x) gi(x)>gj(x),则表示 x ∈ w i x\in w_i xwi;同理 g i ( x ) < g j ( x ) g_i(x)<g_j(x) gi(x)<gj(x),则表示 x ∈ w j x\in w_j xwj
  3. 决策面:多类问题中,特征空间被分为多个决策区域,相邻两个决策区域之间是由决策面分开的,且相邻两个决策区域在决策面上的判别函数相等, g j ( x ) = g i ( x ) g_j(x)=g_i(x) gj(x)=gi(x)
  4. 贝叶斯分类器可以表示为:分别计算n个判别函数,对n个判别函数进行比较,最终选取与最大判别值对应的类别的分类器。
    贝叶斯分类器

基于正态分布的贝叶斯分类器

  1. 单变量正态分布概率密度: p ( x ) = 1 2 π σ e − ( x − μ ) 2 ( 2 σ ) 2 p(x)=\frac{1}{\sqrt{2\pi}\sigma}e^{-\frac{(x-\mu)^2}{(2\sigma)^2}} p(x)=2π σ1e(2σ)2(xμ)2
  2. 多变量正态分布概率密度: p ( x ) = 1 ( 2 π ) 1 2 ∣ Σ ∣ 1 2 e − 1 2 [ ( x − μ ) T Σ − 1 ( x − μ ) ] p(x)=\frac{1}{(2\pi)^{\frac {1}{2}}|\Sigma|^{\frac {1}{2}}}e^{-\frac{1}{2}[(x-\mu)^T\Sigma^{-1}(x-\mu)]} p(x)=(2π)21Σ211e21[(xμ)TΣ1(xμ)]
  3. 其中 μ \mu μ为均值 μ = E { x } = ∫ − ∞ ∞ x p ( x ) d x \mu=E\{x\}=\int_{-\infty}^\infty xp(x)dx μ=E{x}=xp(x)dx
  4. 其中 σ 2 \sigma^2 σ2为方差 σ 2 = ∫ − ∞ ∞ ( x − μ ) 2 p ( x ) d x \sigma^2=\int_{-\infty}^\infty (x-\mu)^2p(x)dx σ2=(xμ)2p(x)dx
  5. 其中 Σ = E { ( x − μ ) ( x − μ ) T } \Sigma=E\{(x-\mu)(x-\mu)^T\} Σ=E{(xμ)(xμ)T} d ∗ d d*d dd的协方差矩阵。正态分布的样本主要集中在均值附近,其分散程度可以用标准差来表示。
  6. 多类判别函数: g i ( x ) = l n p ( x ∣ w 1 ) + l n p ( w 1 ) g_i(x)=lnp(x|w_1)+lnp(w_1) gi(x)=lnp(xw1)+lnp(w1)
  7. 那么基于正态分布的判别函数为: g i ( x ) = − 1 2 ( x − μ i ) T Σ i − 1 ( x − μ i ) − d 2 l n 2 π − 1 2 l n ∣ Σ i ∣ + l n p ( w i ) g_i(x)=-\frac{1}{2}(x-\mu_i)^T\Sigma_i^{-1}(x-\mu_i)-\frac {d}{2}ln2\pi-\frac{1}{2}ln|\Sigma_i|+lnp(w_i) gi(x)=21(xμi)TΣi1(xμi)2dln2π21lnΣi+lnp(wi)
  8. 决策面为: g i ( x ) = g j ( x ) g_i(x)=g_j(x) gi(x)=gj(x)

三种情况:

  1. 协方差矩阵相等且为对角阵,具有相等的方差;
  2. 协方差矩阵都相等,但各类均值向量是任意的;
  3. 协方差矩阵不相等。
  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值