人工智能(AI)领域最流行的八大算法概括

本文概述了人工智能领域的八大关键算法,包括卷积神经网络(CNN)、图神经网络(GNN)、循环神经网络(RNN)、生成对抗网络(GAN)、强化学习网络(DQN)、深度置信网络(DBN)、长短期记忆网络(LSTM)以及迁移学习(Transformer),为读者提供了一站式的理解与学习资源。
摘要由CSDN通过智能技术生成

人工智能(AI)领域最流行的八大算法概括!
1. 卷积神经网络(CNN,Convolutional Neural Network)
2. 图神经网络(GNN,Graph Neural Network)
3. 循环神经网络(RNN,Recurrent Neural Network)
4. 生成对抗网络(GAN,Generative Adversarial Network)
5. 强化学习网络(DQN,Deep Q-Network)
6. 深度置信网络(DBN,Deep Belief Network)
7. 长短期记忆网络(LSTM,Long Short-Term Memory)
8. 迁移学习(Transformer)

2b912f1976274d26a5b1a2af515aaea4.jpg

c42eac3c43064f9f866a922c23663c81.jpg 

 

 

⼈⼯智能的常⽤⼗种算法 根据⼀些 feature 进⾏分类,每个节点提⼀个问题,通过判断,将数据分为两类,再继续提问。这些问题是根据已有数据学习出来的,再投 ⼊新数据的时候,就可以根据这棵树上的问题,将数据划分到合适的叶⼦上。 如果你觉得这篇⽂章看起来稍微还有些吃⼒,或者想要更系统地学习⼈⼯智能,那么推荐你去看床长⼈⼯智能教程。⾮常棒的⼤神之作,教 程不仅通俗易懂,⽽且很风趣幽默。点击可以查看教程。 2. 随机森林 随机森林 在源数据中随机选取数据,组成⼏个⼦集 S 矩阵是源数据,有 1-N 条数据,A B C 是feature,最后⼀列C是类别 由 S 随机⽣成 M 个⼦矩阵 这 M 个⼦集得到 M 个决策树 将新数据投⼊到这 M 个树中,得到 M 个分类结果,计数看预测成哪⼀类的数⽬最多,就将此类别作为最后的预测结果 3. 逻辑回归 逻辑回归 当预测⽬标是概率这样的,值域需要满⾜⼤于等于0,⼩于等于1的,这个时候单纯的线性模型是做不到的,因为在定义域不在某个范围之 内时,值域也超出了规定区间。 所以此时需要这样的形状的模型会⽐较好 那么怎么得到这样的模型呢? 这个模型需要满⾜两个条件 ⼤于等于0,⼩于等于1 ⼤于等于0 的模型可以选择 绝对值,平⽅值,这⾥⽤ 指数函数,⼀定⼤于0 ⼩于等于1 ⽤除法,分⼦是⾃⼰,分母是⾃⾝加上1,那⼀定是⼩于1的了 再做⼀下变形,就得到了 logistic regression 模型 1. 决策树 决策树 通过源数据计算可以得到相应的系数了 最后得到 logistic 的图形 4. SVM support vector machine 要将两类分开,想要得到⼀个超平⾯,最优的超平⾯是到两类的 margin 达到最⼤,margin就是超平⾯与离它最近⼀点的距离,如下 图,Z2>Z1,所以绿⾊的超平⾯⽐较好 将这个超平⾯表⽰成⼀个线性⽅程,在线上⽅的⼀类,都⼤于等于1,另⼀类⼩于等于-1 点到⾯的距离根据图中的公式计算 所以得到 total margin 的表达式如下,⽬标是最⼤化这个 margin,就需要最⼩化分母,于是变成了⼀个优化问题 举个栗⼦,三个点,找到最优的超平⾯,定义了 weight vector=(2,3)-(1,1) 得到 weight vector 为(a,2a),将两个点代⼊⽅程,代⼊(2,3)另其值=1,代⼊(1,1)另其值=-1,求解出 a 和 截矩 w0 的 值,进⽽得到超平⾯的表达式。 a 求出来后,代⼊(a,2a)得到的就是 support vector a 和 w0 代⼊超平⾯的⽅程就是 support vector machine 5. 朴素贝叶斯 朴素贝叶斯 举个在 NLP 的应⽤ 给⼀段⽂字,返回情感分类,这段⽂字的态度是positive,还是negative 为了解决这个问题,可以只看其中的⼀些单词 这段⽂字,将仅由⼀些单词和它们的计数代表 原始问题是:给你⼀句话,它属于哪⼀类 通过 bayes rules 变成⼀个⽐较简单容易求得的问题 问题变成,这⼀类中这句话出现的概率是多少,当然,别忘了公式⾥的另外两个概率 栗⼦:单词 love 在 positive 的情况下出现的概率是 0.1,在 negative 的情况下出现的概率是 0.001 6. K最近邻 最近邻 k nearest neighbours 给⼀个新的数据时,离它最近的 k 个点中,哪个类别多,这个数据就属于哪⼀类 栗⼦:要区分 猫 和 狗,通过 claws 和 sound 两个feature来判断的话,圆形和三⾓形是已知分类的了,那么这个 star 代表的是哪⼀类呢 k=3时,这三条线链接的点就是最近的三个点,那么圆形多⼀些,所以这个star就是属于猫 7. K均值 均值 想要将⼀组数据,分为三类,粉⾊数值⼤,黄⾊数值⼩ 最开⼼先初始化,这⾥⾯选了最简单的 3,2,1 作为各类的初始值 剩下的数据⾥,每个都与三个初始值计算距离,然后归类到离它最近的初始值所在类别 分好类后,计算每⼀类的平均值,作为新⼀轮的中⼼点 ⼏轮之后,分组不再变化了,就可以停⽌了 8. Adaboost adaboost 是 bosting 的⽅法之⼀ bosting就是把若⼲个分类效果并不好的分类器综合起来考虑,会得到⼀个效果⽐较好的分类器。 下图,左右两个决策树,单个看是效果不怎么好的,但是把同样的数据投⼊进去,把两个结果加起来考虑,就会增加可信度 adaboost 的栗⼦,⼿写识别中,在画板上可以抓取到很多 features,例如 始点的⽅向,始点和终点的距离等等 training 的时候,会得到每个 feature 的 weight,例如 2 和 3 的开头部分很像,这个 feature 对分类起到的作⽤很
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值