Dynamic Branch Prediction with Perceptrons

Dynamic Branch Prediction with Perceptrons

  1. 摘要

    • 使用一种最简单的神经网络,感知器,作为分支预测器中常用的两位计数器的替代品
    • 论文提出的预测器的硬件资源与分支历史的长度成线性关系
    • 预测器通过使用更长的分支历史得到了更高的准确率
  2. 论文提出的分支预测器针对于线性可分的分支(linearly separable branches)有较好的效果,当分支处于线性不可分时,效果相对于之前的预测器会变差,因此论文提出了混合的分支预测器。线性可分是指在一个高维空间中,两种类型的样本点可以使用一个超平面划分开。对于两维空间而言,即样本点可以被一条直线分开。

  3. 论文使用的感知器

    • 单层的感知器,有若干的输入单元和一个输出单元,两者之间使用带有权重的边连接。权重是有符号的整数,输出是输入和权重的点积输出
      y = w 0 + ∑ i = 1 n x i w

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值