Dynamic Branch Prediction with Perceptrons
-
摘要
- 使用一种最简单的神经网络,感知器,作为分支预测器中常用的两位计数器的替代品
- 论文提出的预测器的硬件资源与分支历史的长度成线性关系
- 预测器通过使用更长的分支历史得到了更高的准确率
-
论文提出的分支预测器针对于线性可分的分支(linearly separable branches)有较好的效果,当分支处于线性不可分时,效果相对于之前的预测器会变差,因此论文提出了混合的分支预测器。线性可分是指在一个高维空间中,两种类型的样本点可以使用一个超平面划分开。对于两维空间而言,即样本点可以被一条直线分开。
-
论文使用的感知器
-
单层的感知器,有若干的输入单元和一个输出单元,两者之间使用带有权重的边连接。权重是有符号的整数,输出是输入和权重的点积输出
y = w 0 + ∑ i = 1 n x i w
-