大数据开发:Hadoop初学者入门指南

本文为Hadoop初学者提供了一条清晰的学习路径。技术开发方向需要深入学习Hadoop框架并进行项目实践,而数据分析方向则侧重于分析挖掘和算法。选择方向时,应考虑个人兴趣和优势,技术开发涉及更多编程,数据分析则涉及数据解析和模式发现。无论哪个方向,理解Hadoop在大数据平台中的作用是基础。
摘要由CSDN通过智能技术生成

大数据领域发展至今,Hadoop以及确立了关键性的技术地位,企业大数据平台的搭建,基于Hadoop也能得到更高效的解决办法。那么作为大数据工作当中必须要掌握的关键性技术,Hadoop初学该怎么开始呢,下面为大家分享一个简单的Hadoop初学者教程指南。

大数据发展当中,基于大规模数据处理和分析有着不同的发展方向,可以大致分为技术开发方向和数据分析方向,这两者理论上来说都需要掌握Hadoop,但是要掌握到哪种程度,是肯定存在差别的。
 

Hadoop初学者教程


通常来说,技术开发方向,对于Hadoop技术框架的掌握要求要高得多,而数据分析方向,主要是在已经开发成型的Hadoop大数据平台上去实现更多数据的分析,这对于Hadoop平台搭建等方面的要求就要低得多。

作为Hadoop初学者,首先要搞清楚,自己学Hadoop,是想往哪方面走。如果是走技术开发方向,那么强烈建议进行系统的课程学习,建立完善的Hadoop技术知识体系,还要进行一定的Hadoop项目实操,才能真正实现熟练的运用和掌握,而走数据分析方向,那么更多地需要对分析挖掘、算法等知识更加深入去学习。

走技术开发方向,主要的工作内容围绕大量数据的设计、部署、获取和维护(存储)来展开,Hadoop工程师需要设计和部署的系统,使相关数据可用于各种面向消费者和内部应用。

走数据分析方向,主要的工作内容,这是围绕大数据工程师设计的系统中的大量数据来展开,包括分析趋势、模式以及开发各种分类、预测和预测系统等。

那么怎么确定,走技术开发方向还是数据分析方向呢?

一方面结合自己的兴趣来选择,另一方面结合自己的优势强项来选择。技术开发方向,在未来涉及到更多的编程任务,也就是俗称的“写代码”;数据分析方向,涉及到更多的挖掘、分析、算法等任务,编程量要小很多。

以上就是今天为大家带来的Hadoop初学者教程指南,在开始Hadoop学习之前,以上提到的问题,需要大家有一定的考量。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值