【数据结构周周练】014 利用栈和非递归算法求链式存储的二叉树是否为完全二叉树

47 篇文章 163 订阅
45 篇文章 26 订阅

一、前言

首先,明天是个很重要的节日,以后我也会过这个节日,在这里,提前祝所有程序猿们,猿猴节快乐,哦不,是1024程序员节快乐

今天要给大家分享的算法是判断二叉树是否为完全二叉树,相信大家对完全二叉树的概念并不陌生,如果是顺序存储就会很方便,那链式存储怎么判断呢,我的做法是:若当前结点不为空将当前结点入栈,判断结点是否满足完全二叉树,满足返回1,p指向p的左孩子结点;否则返回0。若当前结点为空;出栈,并使p指向p的右孩子继续遍历,直到全部遍历完为止

其他思路:结合编号,从上到下,从左往右依次对结点进行编号,并判断编号与父节点编号关系,若从0开始编号,则父节点与孩子结点的关系为

T->lChild == T->parent * 2 + 1
T->rChild == (T->parent + 1) * 2 

 只要出现不满足,则说明不是完全二叉树。该算法比较简单,大家自己尝试做一下。

二、题目

将下图用二叉树存入,并判断该树是否为完全二叉树。其中圆角矩形内为结点数据,旁边数字为结点编号,编号为0的结点为根节点,箭头指向的结点为箭尾的孩子结点。

 

不是完全二叉树

 

是完全二叉树

 三、代码

#define MAXQUEUESIZE 10

#include<iostream>
#include<malloc.h>

using namespace std;

typedef struct BiTNode {
	int data;
	int number;
	struct BiTNode *lChild, *rChild, *parent;
}BiTNode, *BiTree;

typedef BiTree SElemType;

typedef struct LNode{
	SElemType data;
	struct LNode *next;
}LNode,*LinkStack;

int number = 0;
int yon = 0;
int yesOrNo[] = { 1,0,1,0,0,1,1,1,0,0,1,0,0,1,0,0 };
int numData[] = { 1,2,4,3,5,7,8,6 };

BiTree treeParent = NULL;

int InitStack(LinkStack &S) {
	S = (LinkStack)malloc(sizeof(LNode));
	if (!S) {
		cout << "空间分配失败(Allocate space failure)" << endl;
		exit(OVERFLOW);
	}

	S->next = NULL;
	return 1;
}

int Push(LinkStack &S, SElemType e) {
	LinkStack p = (LinkStack)malloc(sizeof(LNode));
	if (!p)
	{
		cout << "结点分配失败(Allocate node failure)" << endl;
		exit(OVERFLOW);
	}
	S->data = e;
	p->next = S;
	S = p;
	return 1;
}

int Pop(LinkStack &S, SElemType &e) {
	LinkStack p = S->next;
	if (!p)
	{
		cout << "栈空(The stack is null)" << endl;
		exit(OVERFLOW);
	}
	e = p->data;
	S->next = p->next;
	free(p);
	return 1;
}

int OperationBiTree(BiTree &T) {
	T = (BiTree)malloc(sizeof(BiTNode));
	if(!T){
		cout << "空间分配失败(Allocate space failure.)" << endl;
		exit(OVERFLOW);
	}
	T->number = number;
	T->data = numData[number];
	number++;
	T->lChild = NULL;
	T->rChild = NULL;
	T->parent = treeParent;
	return 1;
}

void EstablishBiTree(BiTree &T) {
	OperationBiTree(T);
	treeParent = T;
	if (yesOrNo[yon++])
		EstablishBiTree(T->lChild);
	treeParent = T;
	if (yesOrNo[yon++])
		EstablishBiTree(T->rChild);
}

int Judge(BiTree T) {
	BiTree p = T;
	if (!p->rChild && p->lChild) {
		if (p->lChild || p->rChild)
			return 0;
	}
		
	else if (p->rChild && !p->lChild)
		return 0;
	else
		return 1;
}

int JudgeCompleteBiTree(BiTree T) {
	BiTree p = T;
	LinkStack S;
	InitStack(S);

	while (p||S->next)
	{
		if (p)
		{
			Push(S, p);
			if (Judge(p))
				p = p->lChild;
			else
				return 0;
		}	
		else
		{
			Pop(S, p);
			p = p->rChild;
		}
	}
	return 1;
}

void main() {
	BiTree T;
	EstablishBiTree(T);
	if (JudgeCompleteBiTree(T))
		cout << "This binary tree is a complete binary tree" << endl;
	else
		cout << "This binary tree isn't a complete binary tree" << endl;

}

四、实现效果

第一棵树

对于第二颗树,只需要修改两个位置,树创建时候的两个数组:

int yesOrNo[] = { 1,1,1,0,0,1,0,0,1,0,0,1,1,0,0,1,0,0 };
int numData[] = { 1,2,4,8,9,5,3,6,7 };

结果如下:

第二棵树

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值