用Power BI对超市数据进行分析

本文通过Power BI对一家在线商店的数据进行分析,包括数据导入、清洗、探索性分析,解答了最佳销售产品、产品关联性以及如何构建可视化仪表板等问题。数据揭示了不同城市的销售表现、产品类别的销量与利润、最佳销售时间和产品组合效应。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

注:这里使用的是某家在线商店的数据集。这个数据集包含销售家具、办公用品和科技产品在内的订单编号、订单/发货日期、客户信息、产品信息、总销售额、利润……

现在假设营销部门带着这个数据集来找我们,他们想知道我们对现有数据的看,并提出了以下问题:

- 我们能否就数量、销售额或利润确定出最佳产品/子类别/类别?

- 什么物品一般是一起卖的?

- 你还能为我们提供哪些有用的建议?

- 你能帮我们监控这些 KPI 吗?

营销部门的需求收到了,下面我将用 Power BI 来回答他们的问题!

1、导入数据

首先,我们需要导入并理解数据集:

在 Power BI 中,一旦连接到源数据(传统 CSV 文件、SQL Server、API、电子表格……),我们就会得到这个视图,它会为我们提供有关数据质量的信息。

在这里,我们可以看到缺少一些行,该列包含数值与分类值,按列列出的不同值的数量,每列的最小值/最大值......

2、数据清洗

  • 首先,在需要时更改列的数据类型:数据类型对于创建计算、比较数据非常关键。
  • 日期当前是文本(字符串)格式,我们需要将它格式标准化,把类型更改为日期类型。
  • 用“,”替换数字
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值