©作者 | leo
早于90年代初,数据透视的概念就被提出,主要的应用场景是处理大量数据的交互式汇总查询,它实现了行或列的移动,使得行可以移到列上,列移到行上,从而根据使用者的诉求取对关注的数据子集进行排序,分组,筛选,汇总等等,它以强大而灵活的数据查询方式被广泛推广开来,人们可以自定义计算公式,展开或者折叠需要关注的结果数据集,查看数据摘要信息。
今天我们讨论的是两个均有数据透视功能的工具,也是时下最为常见和流行的数据分析工具:Excel和Python,希望能够通过本文让您加深对数据透视的理解和使用。文中也会在合适的地方讲二者进行对比,希望能对读者有一定启发。
首先我们来介绍下Excel中的数据透视表的使用方法。
01 Excel数据透视简介
数据源的基本要求:
Excel使用的数据源是有一定的格式要求的,并非任何数据都能够直接进行数据透视,这点来说,python对数据的选择则更为灵活。
● 数据源首行需要是标题行
如果没有标题行,则在后面的字段汇总就会产生问题,因此这是首要条件。
● 不能包含空行和空列
因为透视表的数据截取是以空行和空列作为停止的条件的。
● 不能包含空的单元格
数据透视主要是对数值型进行汇总、文本型计数,空的单元格会对汇总结果产生影响。
● 不能包含合并单元格
合并的单元格会导致读取失败。
● 不能包含同类字段
02 数据透视表使用方法
创建数据透视表
下面介绍如何快速建立数据透视表,首先通过ctrl+shift+⬇和ctrl+shift+向左箭头选中数据区域,然后单击菜单栏下的插入-数据透视表,在弹出框中选择透视表的位置是在新的工作表还是现有工作表的某个区域,位置栏旁边的箭头用于设定区域。
新生成的透视表允许我们对不同的字段进行各种数学汇总,只需要将不同的维度字段拖入对应的栏目中即可,比如查看不同月份、季度的销量、销售额情况可以将销售日期字段拖入行中,将销售数量拖入值中,并选择加和汇总。