数据挖掘方法比较

本文对比了数据挖掘中的三种常用方法:决策树、神经网络和Logistic回归。决策树简单直观,适用于缺失值处理且不易受异常值影响;神经网络在处理非线性关系时效果好,但过拟合风险高;Logistic回归在应用广泛性和变量筛选上有其优势,但对缺失值和异常值敏感。
摘要由CSDN通过智能技术生成

一、可解释性和应用广泛性

1、决策树:简单直观,逻辑性强,易于理解和应用,广泛使用。

2、神经网络:可解释性差,远没有决策树和回归应用广泛。

3、Logistic回归:更为成熟、应用更为广泛,具有强大的活力和最广泛的业务应用基础。

二、缺失值和异常值敏感情况

1、决策树:对缺失值几乎不做处理即可应用,不易受到异常值影响。

2、神经网络:对缺失值敏感,需要对缺失值处理(赋值、替换或删除),对异常值和噪声不敏感。

3、Logistic回归:不能处理缺失值,需要对缺失值(赋值、替换或删除),对异常值敏感,应删除。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值