一、可解释性和应用广泛性
1、决策树:简单直观,逻辑性强,易于理解和应用,广泛使用。
2、神经网络:可解释性差,远没有决策树和回归应用广泛。
3、Logistic回归:更为成熟、应用更为广泛,具有强大的活力和最广泛的业务应用基础。
二、缺失值和异常值敏感情况
1、决策树:对缺失值几乎不做处理即可应用,不易受到异常值影响。
2、神经网络:对缺失值敏感,需要对缺失值处理(赋值、替换或删除),对异常值和噪声不敏感。
3、Logistic回归:不能处理缺失值,需要对缺失值(赋值、替换或删除),对异常值敏感,应删除。