【集合论】等价类 ( 等价类概念 | 等价类示例 | 等价类性质 | 商集 | 商集示例 )★

34 篇文章 99 订阅





一、等价类



R R R 关系 A A A 集合 上的二元关系 , A A A 集合不为空集 , A ≠ ∅ A \not= \varnothing A= ,

对于 A A A 集合中的 任意 x x x 元素 , ∀ x ∈ A \forall x \in A xA ,

x x x 关于 R R R 关系的等价类 [ x ] R = { y ∣ y ∈ A ∧ x R y } [x]_R = \{ y | y \in A \land xRy \} [x]R={yyAxRy} ;

x x x 关于 R R R 关系的等价类 , 简称为 x x x 的等价类 , 记作 [ x ] [x] [x] ;



[ x ] R [x]_R [x]R 表示 x x x 关于 R R R 关系下的等价类 ;

该等价类是由所有 x x x 具有 R R R 关系的 y y y 组成的集合 ;

如果只有一个等价关系 , 上述的 R _R R 下标可以省略 , [ x ] R [x]_R [x]R 可以简写成 [ x ] [x] [x]





二、等价类示例



集合 A = { 1 , 2 , 3 , 4 , 5 , 8 } A = \{1,2,3,4,5,8\} A={1,2,3,4,5,8}

R R R 关系集合 A A A 上的 3 3 3 同于关系

符号化表示为 : R = < x , y > ∣ x , y ∈ A ∧ x ≡ y ( m o d 3 ) R = {<x, y> | x, y \in A \land x \equiv y\pmod{3} } R=<x,y>x,yAxy(mod3)

≡ \equiv 符号的含义是 恒等于


1 1 1 R R R 关系上的等价类是 { 1 , 4 } \{ 1, 4 \} {1,4}

2 2 2 R R R 关系上的等价类是 { 2 , 5 , 8 } \{ 2, 5, 8 \} {2,5,8}

3 3 3 R R R 关系上的等价类是 { 3 } \{ 3 \} {3}


上述 3 3 3 个等价类 , 等价类内部存在全域关系 , 等价类之间没有任何关系 ;

在这里插入图片描述





三、等价类性质



R R R 关系 A A A 集合 上的等价关系 , A A A 集合不为空集 , A ≠ ∅ A \not= \varnothing A= , 对于任意 A A A 集合中的元素 x , y x,y x,y , ∀ x , y ∈ A \forall x,y \in A x,yA , 有以下性质 :


① 每个元素所在的等价类非空 ;

[ x ] R ≠ ∅ [x]_R \not= \varnothing [x]R=


② 两个元素如果存在关系 , 那么它们的等价类相等 ;

x R y ⇒ [ x ] R = [ y ] R xRy \Rightarrow [x]_R = [y]_R xRy[x]R=[y]R


③ 两个元素如果不存在关系 , 那么它们的等价类肯定不相交 ;

¬ x R y ⇒ [ x ] R ∩ [ y ] R = ∅ \lnot xRy \Rightarrow [x]_R \cap [y]_R = \varnothing ¬xRy[x]R[y]R=


④ 所有的等价类的并集 , 就是原来的集合 A A A ;

⋃ { [ x ] R ∣ x ∈ A } = A \bigcup \{ [x]_R | x \in A \} = A {[x]RxA}=A





四、商集



R R R 关系 A A A 集合 上的等价关系 , A A A 集合不为空集

A A A 集合 关于 R R R 关系 的商集

A / R = { [ x ] R ∣ x ∈ A } A/R = \{ [x]_R | x \in A \} A/R={[x]RxA}

简称 : A A A 的商集

商集的本质 : 商集 本质是一个 集合 , 集合中的元素是 等价类 , 该等价类是基于 R R R 关系的 ;





五、商集示例 1



集合 A = { 1 , 2 , 3 , 4 , 5 , 8 } A = \{1,2,3,4,5,8\} A={1,2,3,4,5,8}

R R R 关系集合 A A A 上的 3 3 3 同于关系

符号化表示为 : R = < x , y > ∣ x , y ∈ A ∧ x ≡ y ( m o d 3 ) R = {<x, y> | x, y \in A \land x \equiv y\pmod{3} } R=<x,y>x,yAxy(mod3)

≡ \equiv 符号的含义是 恒等于


1 1 1 R R R 关系上的等价类是 { 1 , 4 } \{ 1, 4 \} {1,4}

2 2 2 R R R 关系上的等价类是 { 2 , 5 , 8 } \{ 2, 5, 8 \} {2,5,8}

3 3 3 R R R 关系上的等价类是 { 3 } \{ 3 \} {3}


商集定义 : A / R = { [ x ] R ∣ x ∈ A } A/R = \{ [x]_R | x \in A \} A/R={[x]RxA}

A A A 集合关于 R R R 关系的商集是 :

A / R = { { 1 , 4 } , { 2 , 5 , 8 } , { 3 } } A/R = \{ \{ 1, 4 \} , \{ 2, 5, 8 \} , \{ 3 \} \} A/R={{1,4},{2,5,8},{3}}





六、商集示例 2



集合 A = { a 1 , a 2 , ⋯   , a n } A = \{ a_1 , a_2 , \cdots , a_n \} A={a1,a2,,an} 上的等价关系有 : I A I_A IA 恒等关系 , E A E_A EA 全域关系 ;



1. 恒等关系 I A I_A IA : 集合中的每个元素都是一个等价类 ; 分类 粒度最细 ;

A A A 集合关于 恒等关系 I A I_A IA 的商集 :
A / I A = { { a 1 } , { a 2 } , ⋯   , { a n } } A/I_A = \{ \{ a_1 \} , \{ a_2 \} , \cdots , \{ a_n \} \} A/IA={{a1},{a2},,{an}}



2. 全域关系 E A E_A EA : 集合中的 所有元素是一个等价类 ; 所有元素放在一起 , 每个元素彼此之间都有关系 ; 该分类 粒度最粗 ;

A A A 集合关于 全域关系 E A E_A EA 的商集 :
A / E A = { { a 1 , a 2 , ⋯   , a n } } A/E_A = \{ \{ a_1 ,a_2 , \cdots , a_n \} \} A/EA={{a1,a2,,an}}



3. R i j R_{ij} Rij 关系 : 恒等关系 与 < a i , a j > , < a j , a i > <a_i , a_j> , <a_j , a_i> <ai,aj>,<aj,ai> 的并集 ; 该关系是 自反 , 对称 , 传递的 , 是等价关系 ;

R i j R_{ij} Rij 关系描述 :

R i j = I A ∪ { < a i , a j > , < a j , a i > } R_{ij} = I_A \cup \{ <a_i , a_j> , <a_j , a_i> \} Rij=IA{<ai,aj>,<aj,ai>}

A A A 集合关于 全域关系 R i j R_{ij} Rij 的商集 :

  • a i , a j a_i, a_j ai,aj 分在一个等价类中 { a i , a j } \{ a_i , a_j \} {ai,aj} , 对应 { < a i , a j > , < a j , a i > } \{ <a_i , a_j> , <a_j , a_i> \} {<ai,aj>,<aj,ai>}
  • 将集合中 a i , a j a_i, a_j ai,aj 之外的的其它元素单独分成一类 , 对应 I A I_A IA , { a 1 } , ⋯   , { a i − 1 } , { a i + 1 } , ⋯   , { a j − 1 } , { a j + 1 } , ⋯   , a n } \{a_1\} , \cdots , \{a_{i - 1}\}, \{a_{i + 1}\}, \cdots , \{a_{j - 1}\} , \{a_{j + 1}\}, \cdots , a_n \} {a1},,{ai1},{ai+1},,{aj1},{aj+1},,an}

A / R i j = { { a i , a j } , { a 1 } , ⋯   , { a i − 1 } , { a i + 1 } , ⋯   , { a j − 1 } , { a j + 1 } , ⋯   , a n } , } A/R_{ij} = \{ \{ a_i , a_j \} , \{a_1\} , \cdots , \{a_{i - 1}\}, \{a_{i + 1}\}, \cdots , \{a_{j - 1}\} , \{a_{j + 1}\}, \cdots , a_n \} , \} A/Rij={{ai,aj},{a1},,{ai1},{ai+1},,{aj1},{aj+1},,an},}



4. 空关系 ∅ \varnothing 不是集合 A A A 上的等价关系 , 空关系不是自反的 ;





七、商集示例 3



集合 A = { a , b , c } A = \{ a , b , c \} A={a,b,c} 上的全体等价关系 : 共有 五种等价关系 , 只有 三个元素 , 在恒等关系基础上 , 考虑两两元素 之间 2 个方向的 有序对组成 的关系 ;


R 1 = I A R_1 = I_A R1=IA 恒等关系 : 对应的商集为 :

A / I A = { { a } , { b } , { c } } A/I_A = \{ \{ a \} , \{ b \} , \{ c \} \} A/IA={{a},{b},{c}}


R 2 = E A R_2 = E_A R2=EA 全域关系 : 对应的商集为 :

A / E A = { { a , b , c } } A/E_A = \{ \{ a , b , c \} \} A/EA={{a,b,c}}


R 3 = I A ∪ { < b , c > , < c , b > } R_3 = I_A \cup \{ <b,c>, <c,b> \} R3=IA{<b,c>,<c,b>} 关系 : 对应的商集为 :

A / R 3 = { { a } , { b , c } } A/R_3 = \{ \{ a \} , \{ b , c \} \} A/R3={{a},{b,c}}


R 4 = I A ∪ { < a , c > , < c , a > } R_4 = I_A \cup \{ <a,c>, <c,a> \} R4=IA{<a,c>,<c,a>} 关系 : 对应的商集为 :

A / R 4 = { { b } , { a , c } } A/R_4= \{ \{ b \} , \{ a , c \} \} A/R4={{b},{a,c}}


R 5 = I A ∪ { < a , b > , < b , a > } R_5 = I_A \cup \{ <a,b>, <b,a> \} R5=IA{<a,b>,<b,a>} 关系 : 对应的商集为 :

A / R 5 = { { c } , { a , b } } A/R_5 = \{ \{ c \} , \{ a , b \} \} A/R5={{c},{a,b}}

  • 99
    点赞
  • 309
    收藏
    觉得还不错? 一键收藏
  • 13
    评论
评论 13
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值