一、使用 matlab 求解 “ 线性常系数差分方程 “ 示例二
描述 某个 " 线性时不变系统 " 的 " 线性常系数差分方程 " 如下 :
y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ i = 1 N a i y ( n − i ) y(n) = \sum_{i = 0}^M b_i x(n - i) - \sum_{i = 1}^N a_i y(n - i) y(n)=i=0∑Mbix(n−i)−i=1∑Naiy(n−i)
其中 ,
M
=
2
M = 2
M=2 ,
N
=
2
N = 2
N=2 ,
b
0
=
0.0223
b_0 = 0.0223
b0=0.0223 ,
b
1
=
0.01
b_1 = 0.01
b1=0.01 ,
b
2
=
0.0223
b_2 = 0.0223
b2=0.0223 ,
a
1
=
−
1.7007
a_1 = -1.7007
a1=−1.7007 ,
a
2
=
0.7613
a_2 = 0.7613
a2=0.7613 ,
输入序列 : f 1 = 0.4 k H z f_1 = 0.4kHz f1=0.4kHz , f 2 = 2.45 k H z f_2 = 2.45kHz f2=2.45kHz , F s = 10 k H z F_s = 10kHz Fs=10kHz
x ( n ) = sin ( 2 π f 1 n F s ) + sin ( 2 π f 2 n F s ) 0 ≤ n ≤ 127 x(n) = \sin(\cfrac{2 \pi f_1 n} {F_s}) + \sin(\cfrac{2 \pi f_2 n} {F_s}) \ \ \ 0 \leq n \leq 127 x(n)=sin(Fs2πf1n)+sin(Fs2πf2n) 0≤n≤127
边界条件 / 初始条件 :
y ( − 1 ) = 0 y(-1) = 0 y(−1)=0
求该 LTI 系统的 输出序列 ;
线性常系数差分方程 公式 :
y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ i = 1 N a i y ( n − i ) n ≥ M y(n) = \sum_{i = 0}^M b_i x(n - i) - \sum_{i = 1}^N a_i y(n - i) \ \ \ \ \ \ \ n \geq M y(n)=i=0∑Mbix(n−i)−i=1∑Naiy(n−i) n≥M
1、B 向量元素 : x(n) 参数
讨论 B B B 向量 , B B B 向量是 x ( n ) x(n) x(n) 的参数 , 有几个 x ( n ) x(n) x(n) 项 , B B B 向量 就有几个元素 ;
b 0 = 0.0223 b_0 = 0.0223 b0=0.0223 , b 1 = 0.01 b_1 = 0.01 b1=0.01 , b 2 = 0.0223 b_2 = 0.0223 b2=0.0223 ;
% 线性常系数差分方程 中的 x(n) 项系数
B=[0.0223 ,0.001, 0.0223];
2、A 向量元素 : y(n) 参数
下面讨论 A A A 向量 , A A A 向量是 y ( n ) y(n) y(n) 的参数 , 有几个 y ( n ) y(n) y(n) 项 , A A A 向量 就有几个元素 ;
线性常系数差分方程 :
y ( n ) = ∑ i = 0 M b i x ( n − i ) − ∑ i = 1 N a i y ( n − i ) y(n) = \sum_{i = 0}^M b_i x(n - i) - \sum_{i = 1}^N a_i y(n - i) y(n)=i=0∑Mbix(n−i)−i=1∑Naiy(n−i)
a 1 = − 1.7007 a_1 = -1.7007 a1=−1.7007 , a 2 = 0.7613 a_2 = 0.7613 a2=0.7613 , 再加上左侧的 y ( n ) y(n) y(n) 系数 , 将所有的 y ( n ) y(n) y(n) 项 , 移到等式左侧 , 系数如下 :
% 线性常系数差分方程 中的 y(n) 项系数
A=[1, -1.7007, 0.7613];
3、输入序列
输入序列 : f 1 = 0.4 k H z f_1 = 0.4kHz f1=0.4kHz , f 2 = 2.45 k H z f_2 = 2.45kHz f2=2.45kHz , F s = 10 k H z F_s = 10kHz Fs=10kHz
x ( n ) = sin ( 2 π f 1 n F s ) + sin ( 2 π f 2 n F s ) 0 ≤ n ≤ 127 x(n) = \sin(\cfrac{2 \pi f_1 n} {F_s}) + \sin(\cfrac{2 \pi f_2 n} {F_s}) \ \ \ 0 \leq n \leq 127 x(n)=sin(Fs2πf1n)+sin(Fs2πf2n) 0≤n≤127
对应的 matlab 代码为 :
x=sin(2 * pi * 0.4 * (0:127)/10) + sin(2 * pi * 2.45 * (0:127) / 10);
4、matlab 代码
matlab 代码 :
% 输入序列
x=sin(2 * pi * 0.4 * (0:127)/10) + sin(2 * pi * 2.45 * (0:127) / 10);
% 线性常系数差分方程 中的 x(n) 项系数
B=[0.0223 ,0.001, 0.0223];
% 线性常系数差分方程 中的 y(n) 项系数
A=[1, -1.7007, 0.7613];
% 输出序列
y=filter(B,A,x);
%建立幕布
figure;
%绘制 "输出序列" 图像 , 点用上三角表示
plot(y);
% 打开网格
grid on;
绘图效果 :