机器学习实战笔记四_Python3

程序清单2-3,归一化特征值

本笔记将主要注意力放在理解代码上,所以大家看代码中的注释即可

newValue = (oldValue -min)/(max - min)

该程序没什么难点,主要是公式的矩阵化处理,先上伪代码:

def autoNorm(dataSet):
    #得到每一列的max,min
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    #initiate a zero-matrix like dataSet's shape
    normDataSet = zeros(shape(dataSet))
    #get the num of row in dataSet
    m = dataSet.shape[0]
    #init a matrix of minvals that the same rows to the dataSet, 从而使当前数据矩阵中的每个数减去最小值
    normDataSet = dataSet - tile(minVals, (m,1))        #tile(matrixlike,A) :init a matrix when the shape is same to A
                                                        #meanwhile, if A is a number, the matrix is A*1, if A is (m,n),the matrix
                                                        #is m*n matrix
    normDataSet = normDataSet/tile(ranges, (m,1))      #element wise divide
    return normDataSet, ranges, minVals

完整代码:

#批量注释、批量取消注释 Ctrl+/
# from __future__ import print_function
from  numpy import *
import operator#运算符模块
import matplotlib.pyplot as plt
def createDataSet():
    group = array([[1.0,1.1],[1.0,1.0],[0,0],[0, 0.1]])
    labels = ['A','A','B','B']
    return group,labels

group,labels=createDataSet()

def classify0(inX, dataSet, labels, k): #inX: 待测试数据 ;  dataSet: 训练样本集
    dataSetSize = dataSet.shape[0]      #to get the rows of the matrix
    # to get the Xi-Yi of the dataSet
    diffMat = tile(inX, (dataSetSize,1)) - dataSet      #a=[1 2],b=[2 3];tile(a,b) to generate 2*3 matrix when
                                                        #the element all is a [1 2]
    sqDiffMat = diffMat**2
    sqDistances = sqDiffMat.sum(axis=1)         #使每行的元素相加,得到测试样本与各训练样本distance**2
                                                #axis=0,按列相加;axis=1,按行相加;
    distances = sqDistances**0.5
    sortedDistIndicies = distances.argsort()    #将distance中的元素从小到大排列,
                                                # 提取其对应的index(索引),然后输出到 sortedDistIndicies
   #声明一个dict:{key:value1,key2:value2}
    classCount={}
    for i in range(k):
        voteIlabel = labels[sortedDistIndicies[i]]
        #classCount= {'B': 2, 'A': 1},初始化后,classCount每得到一个相同的voteIlabel,就+1
        classCount[voteIlabel] = classCount.get(voteIlabel,0) + 1       #当我们获取字典里的值的时候,一个是通过
                                                                        # 键值对,即dict['key'],另一个就是dict.get()方法
                                                                        # dict.get(voteIlabel,0) = 0, 此处0 to be initiated,
                                                                        #  之后就没有作用了。
    #items方法是可以将字典中的所有项,以列表方式返回。 iteritems方法与items方法相比作用大致相同,只是它的返回值不是列表,而是一个迭代器
    #Python3 中没有iteritems函数,需要用values()代替,并用list转为列表
    # sortedClassCount = sorted((key_label, value_num), key=operator.itemgetter(1), reverse=True)
    #python3中无法使用iteritems,需要对上面这句话改造,我们通过得到两个list,得到出现频率最高的label
    key_label=list(classCount.keys())
    value_num=list(classCount.values())
    #label出现频率由小到大排列,并返回索引index
    sortedvalue_num_indicies = argsort(value_num)
    #返回频率最大的label
    return key_label[len(sortedvalue_num_indicies)-1]

# group,labels = createDataSet()
# a=classify0([0,0], group,labels,3)
# print(a)

def file2matrix(filename):
    #open a file, default: 'r'ead
    fr = open(filename)
    #一次读取所有行
    arrayOLines = fr.readlines()
    #得到行数
    numberOfLines = len(arrayOLines)
    #1000*3 zeros matrix,row-1000, column-3
    returnMat = zeros((numberOfLines,3))
    #声明
    classLabelVector = []
    classLabelVector_Value = []
    index = 0
    #逐行扫描
    for line in arrayOLines:
        #strip函数会删除头和尾的字符,中间的不会删除
        line = line.strip()
        #删除‘\t’字符,仅剩下数据,供使用
        listFromLine = line.split('\t')
        #得到前三列数据,即飞行时间,游戏,冰激凌
        returnMat[index, :] = listFromLine[0:3]
        #得到largeDoses,smallDoses,didntLike的label
        classLabelVector.append(listFromLine[-1])      #无法将largeDoses,smallDoses,didntLike
                                                       #转换为int。基于这个思想,我们在这里将得到的行矩阵建立
                                                       #一个数值矩阵与之对应,暂时这样处理,不合适再继续修改
        if classLabelVector[index] == 'largeDoses':
            classLabelVector_Value.append(3)
        elif classLabelVector[index] == 'smallDoses':
            classLabelVector_Value.append(2)
        else:
            classLabelVector_Value.append(1)
        index += 1
    return returnMat, classLabelVector_Value

def autoNorm(dataSet):
    #得到每一列的max,min
    minVals = dataSet.min(0)
    maxVals = dataSet.max(0)
    ranges = maxVals - minVals
    #initiate a zero-matrix like dataSet's shape
    normDataSet = zeros(shape(dataSet))
    #get the num of row in dataSet
    m = dataSet.shape[0]
    #init a matrix of minvals that the same rows to the dataSet, 从而使当前数据矩阵中的每个数减去最小值
    normDataSet = dataSet - tile(minVals, (m,1))        #tile(matrixlike,A) :init a matrix when the shape is same to A
                                                        #meanwhile, if A is a number, the matrix is A*1, if A is (m,n),the matrix
                                                        #is m*n matrix
    normDataSet = normDataSet/tile(ranges, (m,1))      #element wise divide
    return normDataSet, ranges, minVals

程序验证:

datingDataMat,datingLabels = file2matrix('datingTestSet.txt')
a,b,c = autoNorm(datingDataMat)
print(a)
print(b)
print(c)

任务达成!

[[0.44832535 0.39805139 0.56233353]
 [0.15873259 0.34195467 0.98724416]
 [0.28542943 0.06892523 0.47449629]
 ...
 [0.29115949 0.50910294 0.51079493]
 [0.52711097 0.43665451 0.4290048 ]
 [0.47940793 0.3768091  0.78571804]]
[9.1273000e+04 2.0919349e+01 1.6943610e+00]
[0.       0.       0.001156]

Process finished with exit code 0




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值