用 Python 制作酷炫的可视化大屏,特简单

本文介绍了如何使用Python的Dash库制作数据可视化大屏,结合Plotly和Requests库,展示从MySQL数据库中获取的博客数据。文章详细阐述了数据获取、Dash库的基本原理以及大屏的搭建过程,包括数据爬取、页面布局和回调函数的实现。
摘要由CSDN通过智能技术生成

在数据时代,我们每个人既是数据的生产者,也是数据的使用者,然而初次获取和存储的原始数据杂乱无章、信息冗余、价值较低。

要想数据达到生动有趣、让人一目了然、豁然开朗的效果,就需要借助数据可视化。

以前给大家介绍过使用Streamlit库制作大屏,今天给大家带来一个新方法。

通过Python的Dash库,来制作一个酷炫的可视化大屏!

先来看一下整体效果,好像还不错哦。

主要使用Python的Dash库、Plotly库、Requests库。

其中Requests爬取数据,Plotly制作可视化图表,Dash搭建可视化页面。

原始数据是小F的博客数据,数据存储在MySqL数据库中。

如此看来,和Streamlit库的搭建流程,所差不多。

关于Dash库,网上的资料不是很多,基本上只能看官方文档和案例,下面小F简单介绍一下。

Dash是一个用于构建Web应用程序的高效Python框架,特别适合使用Python进行数据分析的人。

Dash是建立在Flask,Plotly.js和React.js之上,非常适合在纯Python中,使用高度自定义的用户界面,构建数据可视化应用程序。

下面就给大家讲解下如何通过Dash搭建可视化大屏~

01. 数据

使用的数据是博客数据,主要是下方两处红框的信息。

通过爬虫代码爬取下来,存储在MySQL数据库中。

其中MySQL的安装,大家可以自行百度,都挺简单的。

安装好后,进行启用,以及创建数据库。

# 启动MySQL, 输入密码  
mysql -u root -p  
# 创建名为my_database的数据库  
create database my_database; 

其它相关的操作命令如下所示。

# 显示MySQL中所有的数据库  
show databases;  
# 选择my_database数据库  
use my_database;  
# 显示my_database数据库中所有的表  
show tables;  
# 删除表  
drop table info;  
drop table `2021-12-26`;  
# 显示表中的内容, 执行SQL查询语句  
select * from info;  
select * from `2021-12-26`; 

搞定上面的步骤后,就可以运行爬虫代码。

数据爬取代码如下。这里使用到了pymysql这个库,需要pip安装下。

import requests  
import re 
from bs4 import BeautifulSoup  
import time  
import random  
import pandas as pd  
from sqlalchemy import create_engine 
import datetime as dt  
def get_info():  
    """获取大屏第一列信息数据"""  
    headers = {  
        'User-Agent': 'Mozilla/5.0 (MSIE 10.0; Windows NT 6.1; Trident/5.0)',  
        'referer': 'https: // passport.csdn.net / login',  
    }  
    # 我的博客地址  
    url = 'https://blog.csdn.net/river_star1/article/details/121463591'  
    try:  
        resp = requests.get(url, headersheaders=headers)  
        now = dt.datetime.now().strftime("%Y-%m-%d %X")  
        soup = BeautifulSoup(resp.text, 'lxml')  
        author_name = soup.find('div', class_='user-info d-flex flex-column profile-intro-name-box').find('a').get_text(strip=True)  
        head_img = soup.find('div', class_='avatar-box d-flex justify-content-center flex-column').find('a').find('img')['src']  
        row1_nums = soup.find_all('div', class_='data-info d-flex item-tiling')[0].find_all('span', class_='count')  
        row2_nums = soup.find_all('div', class_='data-info d-flex item-tiling')[1].find_all('span', class_='count')  
        level_mes = soup.find_all('div', class_='data-info d-flex item-tiling')[0].find_all('dl')[-1]['title'].split(',')[0]  
        rank = soup.find('div', class_='data-info d-flex item-tiling').find_all('dl')[-1]['title']  
        info = {  
            'date': now,#时间  
            'head_img': head_img,#头像  
            'author_name': author_name,#用户名  
            'article_num': str(row1_nums[0].get_text()),#文章数  
            'fans_num': str(row2_nums[1].get_text()),#粉丝数  
            'like_num': str(row2_nums[2].get_text()),#喜欢数  
            'comment_num': str(row2_nums[3].get_text()),#评论数  
            'level': level_mes,#等级  
            'visit_num': str(row1_nums[3].get_text()),#访问数  
            'score': str(row2_nums[0].get_text()),#积分  
            'rank': str(row1_nums[2].get_text()),#排名  
        }  
        df_info = pd.DataFrame([info.values()], columns=info.keys())  
        return df_info  
    except Exception as e:  
        print(e)  
        return get_info()  
def get_type(title):  
    """设置文章类型(依据文章名称)"""  
    the_type = '其他'  
    article_types = ['项目', '数据可视化', '代码', '图表', 'Python', '可视化', '数据', '面试', '视频', '动态', '下载']  
    for article_type in article_types:  
        if article_type in title:  
            the_type = article_type  
            break  
    return the_type  
def get_blog():  
    """获取大屏第二、三列信息数据"""  
    headers = {  
        'User-Agent': 'Mozilla/5.0 (MSIE 10.0; Windows NT 6.1; Trident/5.0)', 
        'referer': 'https: // passport.csdn.net / login',  
    }  
    base_url = 'https://blog.csdn.net/river_star1/article/list/'  
    resp = requests.get(base_url+"1", headersheaders=headers,  timeout=3)  
    max_page = int(re.findall(r'var listTotal = (\d+);', resp.text)[0])
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值