SVM 之 基础

在学习SVM之前有些数学基础还是需要掌握的,特别是想彻底明白SVM就更需要掌握了,它涉及到怎么解SVM的问题。至于之想了解SVM的直观步骤的,请跳过此章节。

 

 

1.       对偶问题(dual problem

如果有原问题:

 

                            

设该问题的最优解为p*=inf{f0(x)},所以问题就可以转化为求p*的下界。

 

根据Lagrange函数可以将上式子转化为:

 

因为原问题的限制条件为,所以,因此L的最优解与p*就存在如下关系:

 

可以看到L函数的最优解, 就是我们想要的最优解p*的下界。所以为了找到最好的下界,就需要在条件下,最大化 。这也就是所谓的对偶问题。

 

总结一下,原问题的对偶问题就是

 

 

2.       强对偶定理

我们以p*的下界看作p*的值,那么这个下界与真实的p*有多大差距呢,此时我们很自然的引出对偶间隙的概念,来定义这种问题转化的误差。令d*L函数最优解的最大值,即d*=max inf{L}。那么(p*-d*)就是对偶间隙。

 

自然的,当对偶间隙等于零的时候,p*=d*,此时我们估计的下界就是准确值,这种情况就称为强对偶。

 

3.       KKT (Karush-Kuhn-Tucker) 条件

x*满足KKT条件,则存在 ,使Lagrange函数

 

 

满足:

 

 

         这个条件其实很简单,(1)(2)(3)都是原问题的条件,(4)的意思是说,如果我有x*可以令L达到最优解,那么如果令(4)成立,就可以得到最优解的最大值。(5)的意思也很明确,是说x*就是L的极值(偏导数为零就是极值嘛)

 

         根据强对偶定理,可以证明,若x*满足KKT条件,则x*就是原问题的解。证明略。其实直观上也很好理解,KKT条件使得我们可以得到L最优解的最大值了嘛,这不正是我们所要求的目标。

 

内容概要:本文详细介绍了QY20B型汽车起重机液压系统的设计过程,涵盖其背景、发展史、主要运动机构及其液压回路设计。文章首先概述了汽车起重机的分类和发展历程,强调了液压技术在现代起重机中的重要性。接着,文章深入分析了QY20B型汽车起重机的五大主要运动机构(支腿、回转、伸缩、变幅、起升)的工作原理及相应的液压回路设计。每个回路的设计均考虑了性能要求、功能实现及工作原理,确保系统稳定可靠。此外,文章还详细计算了支腿油缸的受力、液压元件的选择及液压系统的性能验算,确保设计的可行性和安全性。 适合人群:从事工程机械设计、液压系统设计及相关领域的工程师和技术人员,以及对起重机技术感兴趣的高等院校学生和研究人员。 使用场景及目标:①为从事汽车起重机液压系统设计的工程师提供详细的参考案例;②帮助技术人员理解和掌握液压系统设计的关键技术和计算方法;③为高等院校学生提供学习和研究起重机液压系统设计的实用资料。 其他说明:本文不仅提供了详细的液压系统设计过程,还结合了实际工程应用,确保设计的实用性和可靠性。文中引用了大量参考文献,确保设计依据的科学性和权威性。阅读本文有助于读者深入了解汽车起重机液压系统的设计原理和实现方法,为实际工程应用提供有力支持。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值