SVM 之 基础

在学习SVM之前有些数学基础还是需要掌握的,特别是想彻底明白SVM就更需要掌握了,它涉及到怎么解SVM的问题。至于之想了解SVM的直观步骤的,请跳过此章节。

 

 

1.       对偶问题(dual problem

如果有原问题:

 

                            

设该问题的最优解为p*=inf{f0(x)},所以问题就可以转化为求p*的下界。

 

根据Lagrange函数可以将上式子转化为:

 

因为原问题的限制条件为,所以,因此L的最优解与p*就存在如下关系:

 

可以看到L函数的最优解, 就是我们想要的最优解p*的下界。所以为了找到最好的下界,就需要在条件下,最大化 。这也就是所谓的对偶问题。

 

总结一下,原问题的对偶问题就是

 

 

2.       强对偶定理

我们以p*的下界看作p*的值,那么这个下界与真实的p*有多大差距呢,此时我们很自然的引出对偶间隙的概念,来定义这种问题转化的误差。令d*L函数最优解的最大值,即d*=max inf{L}。那么(p*-d*)就是对偶间隙。

 

自然的,当对偶间隙等于零的时候,p*=d*,此时我们估计的下界就是准确值,这种情况就称为强对偶。

 

3.       KKT (Karush-Kuhn-Tucker) 条件

x*满足KKT条件,则存在 ,使Lagrange函数

 

 

满足:

 

 

         这个条件其实很简单,(1)(2)(3)都是原问题的条件,(4)的意思是说,如果我有x*可以令L达到最优解,那么如果令(4)成立,就可以得到最优解的最大值。(5)的意思也很明确,是说x*就是L的极值(偏导数为零就是极值嘛)

 

         根据强对偶定理,可以证明,若x*满足KKT条件,则x*就是原问题的解。证明略。其实直观上也很好理解,KKT条件使得我们可以得到L最优解的最大值了嘛,这不正是我们所要求的目标。

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值