某省调查城镇交通状况,得到现有城镇道路统计表,表中列出了每条道路直接连通的城镇。省政府“畅通工程”的目标是使全省任何两个城镇间都可以实现交通(但不一定有直接的道路相连,只要互相间接通过道路可达即可)。问最少还需要建设多少条道路?
Input
测试输入包含若干测试用例。每个测试用例的第1行给出两个正整数,分别是城镇数目N ( < 1000 )和道路数目M;随后的M行对应M条道路,每行给出一对正整数,分别是该条道路直接连通的两个城镇的编号。为简单起见,城镇从1到N编号。 注意:两个城市之间可以有多条道路相通,也就是说 3 3 1 2 1 2 2 1 这种输入也是合法的 当N为0时,输入结束,该用例不被处理。
Output
对每个测试用例,在1行里输出最少还需要建设的道路数目。
Sample Input
4 2
1 3
4 3
3 3
1 2
1 3
2 3
5 2
1 2
3 5
999 0
0
解析:并查集问题
比如输入了1,3,就说明村庄1和村庄3有路,将村庄1和村庄3合并为一个集合
全部合并完后,如果剩了有n个集合,输入n-1即可
#include<stdio.h>
int bin[1002];
int findx(int x)
{
int r=x;
while(bin[r]!=r)
r=bin[r];
return r;
}
void merge(int x,int y)
{
int fx,fy;
fx = findx(x);
fy = findx(y);
if(fx != fy)
bin[fx]=fy;
}
int main()
{
int n,m,i,x,y,count;
while(scanf("%d",&n),n)
{
for(i=1;i<=n;i++)
bin[i] = i;
for(scanf("%d",&m);m>0;m--)
{
scanf("%d %d",&x,&y);
merge(x,y);
}
count=0;
for(i=1;i<=n;i++)
if(bin[i]==i)
count++;
printf("%d\n",count-1);
}
}