论文那些事—One Pixel Attack for FoolingDeep Neural Networks

One Pixel Attack for Fooling Deep Neural Networks(愚弄深层神经网络的单像素攻击)

1、摘要

以往的攻击如FGSM、I-FGSM修改了所有像素点,JSMA则是选择性的修改像素点,不管哪种方法,修改的像素点都不止一个。本文考虑一种极限条件下的攻击情况,只修改一个像素点达到对图片的攻击。本文提出了一个基于差分进化生成单像素的对抗性扰动。可以以最小攻击信息的条件下,对更多类型的网络进行欺骗。

2、方法

限制修改的数量(只能修改一个点),而不限制修改的扰动大小。其实最先想到的方法是暴力破解,即每个像素点都修改一个次,然后放入模型中跑,最后比较得出到底修改哪个像素点可以实现让模型识别错误,但这个方法耗时耗资源,意义不大。本文作者提出采用差分进化算法(DE)来选取最合适的像素点。DE不使用梯度信息进行优化,因此不要求目标函数可微或之前已知。因此,与基于梯度的方法相比,它可以用于更广泛的优化问题(例如,不可微、动态、噪声等)。

使用DE算法有以下优势:

  • 找到全局最优解的概率更高
  • 目标系统提供较少的信息
  • 简易性,只需要知道概率标签就够了

DE的步骤:

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值