NESTEROV ACCELERATED GRADIENT AND SCALE INVARIANCE FOR ADVERSARIAL ATTACKS(ICRL2020,NI-FGSM,SIM)
1、摘要
在本文中,我们从将对抗性例子的生成作为一个优化过程的角度出发,提出了两种提高对抗性例子可转移性的新方法,即Nesterov迭代法快速梯度符号法(NI-FGSM)和缩放不变攻击法(SIM)。NI-FGSM的目标是将Nesterov加速梯度引入迭代攻击中,从而有效地向前看,提高对抗性样本的迁移性。
本文贡献有以下三点:
- 将Nesterov加速梯度引入迭代的基于梯度的攻击中,从而有效地超前,提高对抗性例子的转移能力。
- 深度学习模型具有缩放不变性,于是通过优化收缩后图像副本上的对抗性扰动来提高对抗样本的迁移性。
- 将NI-FGSM和SIM与现有的基于梯度的攻击方法相结合,得到不错的黑盒攻击成功率。
2、NI-FGSM原理
Nesterov Accelerated Gradient (NAG) 是一种梯度下降法的变种,其本质上是动量的改进: