论文那些事—AdvDrop: Adversarial Attack to DNNs by Dropping Information

这篇博客介绍了AdvDrop,一种新型对抗性攻击方法,通过在频域内删除图像细节来欺骗深度学习模型。它展示了AdvDrop在对抗和非对抗环境中的有效性,并指出传统的防御方法对此较弱。文章还详细阐述了其背后的理论和实验结果,包括对经典防御策略的挑战。
摘要由CSDN通过智能技术生成

AdvDrop: 通过丢弃信息生成对抗样本去攻击DNN(ICCV2021)

1、摘要\背景

人有很强的抽象能力和联想力,例如一个由几块积木拼成的乐高玩具,小朋友也能轻易认出其中描述的场景。甚至几个像素,玩家也可以轻易认出这是哪个人物,但AI确没有那么容易识别。这不就满足了对抗样本的两个特性:1、人眼无法察觉对图片的改动  2、使机器能够识别错误

 为此,我们提出了一种新的对抗性攻击,名为AdvDrop,它通过删除图像的现有信息来制作对抗性样本。以前,大多数对抗攻击都会在干净的图像上添加额外的干扰信息。与以前的工作相反,我们提出的工作从一个新的角度探讨了DNN模型的对抗性健壮性,通过丢弃不易察觉的细节来制作对抗性样本。

主要贡献有三方面:

  1. 为DNN生成对抗性攻击,打开了新的大门
  2. 证明了AdvDrop在目标和非目标攻击环境下的有效性,并且当前防御方法对此防御效果较差
  3. 使用可视化解释AdvDrop生成对抗样本

2、方法论

这里先讲一点背景知识,毕竟跨度有点大:

低频分量(低频信号)代表着图像中亮度或者灰度值变化缓慢的区域,也就是图像中大片平坦的区域,描述了图像的主要部分。主要对整幅图像强度的综合度量。

高频分量(高频信号)对应着图像变化剧烈的部分,也就是图像的边缘(轮廓)或者噪声以及细节部分,主要是对图像边缘和轮廓的度量。

DCT变换对图像进行压缩的原理是减少图像中的高频分量,高频主要是对应图像中的细节信息,而我们人眼对细节信息并不是很敏感,因此可以去除高频的信息量。另外,去掉50%的高频信息存储部分,图像信息量的损失不到5%。(DCT变换本身是无损的࿰

评论 11
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值