最长上升子序列

对于最长公共子序列的理解:
x = {x1,x2,x3,....xm}
y = {y1,y2,y3,....yn}
对这两个集合中的进行查找最长公共自序列
对于任意一个集合 首先想到的是集合长度所以有以下的情况
1. m = 0 || n =0 || m = 0 && n = 0
2. 对于两个集合长度都不是0的情况下有
   对两个集合的最后一个元素进行查找 xm 与 yn的情况
   1当Xm == Yn 元素 就对Xm-1 和 Yn-1进行讨论情况 然乎一直往前探索
   当Xm != Yn 元素 那么有这样两种可能
   2 Xm == Yn-1
   3 Xm-1 == Yn
   对于情况1 2 3 比较完 又要往前一个元素进行对比情况 那么对比情况也是情况1 2 3 里面的一种情况
   总结 这三种情况的不断探索
算法导论里面对这个情况的描述是
        = 0                         若i = 0 || j = 0
C[i,j]  = C[i-1,j-1]+1              若i,j>0,Xi==Yj 加1的原因是Xi==Yj相同
        = Max{C[i-1,j],C[i,j-1]}    若i,j>0,Xi==Yj 加1的原因是Xi==Yj相同
总结:这个思路是对两个集合进行比较

int main()
{
    int n1, n2;
    scanf("%s",x);
    scanf("%s",y);
    n1 = strlen(x);
    n2 = strlen(y);
    int con = 0;
    
    //对两个字符串长度判断
    if(n1 == 0 || n2 == 0)
        con = 0;
    for(int i = 1; i <= n1; i++){
        for(int j = 1 ; j <= n2; j++){
               //Xi-1==Yj-1
               if(x[i-1] == y[j-1])
                    //状态转移方程的第二种情况
                    dp[i][j] = dp[i-1][j-1] + 1;
               else
                    dp[i][j] = max(dp[i][j-1],dp[i-1][j]);
        }
    }
     printf("%d",dp[n1][n2]);
    return 0;
}


发布了77 篇原创文章 · 获赞 3 · 访问量 5878
展开阅读全文

没有更多推荐了,返回首页

©️2019 CSDN 皮肤主题: 大白 设计师: CSDN官方博客

分享到微信朋友圈

×

扫一扫,手机浏览