时间序列模型可以用于预测、谱估计、自适应滤波等问题。
(1)预测
预测是使未来值的预测误差尽可能小,可以对平稳和趋势数据进行预测。
(2)谱估计
良好的谱估计需要小的分辨误差和小的随机误差,这些误差都来自有限的量测时间。有经典谱估计(傅立叶谱估计法)和现代谱估计(利用时间序列模型进行估计)
傅立叶谱的问题:
直接法:对样本傅立叶不一定存在和适合,一般要截断时间,利用频谱的功率来计算功率谱。
间接法:利用维纳辛勤定理,建立自相关函数与功率谱的关系,也可求得功率谱估计。
直接法:还可以通过周期图和时间窗的方式来提高估计精度。
缺陷:分辨误差和随机误差不可消除,是因为傅立叶变换有一个不合理的假设:数据在观测区外时周期的或者全为0,不符合实际情况。
现代谱估计法(参数模型谱)
步骤:先对数据建立时间序列模型,由此可外推预测其他数据,增加了量测数据的长度,从而提高谱精度,通过外推的合理预测,比傅立叶变换的假定(周期延拓或0)要合理的多。根据模型与参数估计直接求得功率谱估计。
(3)自适应滤波
实时根据数据的估计结果自动调整模型参数,采用递推算法进行参数修正,并遵循某种准则,达到最优。随机梯度算法就是递推算法。
之后将以具体的例子来实际操练一下时间序列模型,以体会其牛逼之处。