时间序列分析之三:参数估计

本文介绍了时间序列分析中参数估计的各种方法,包括相关矩估计、最小二乘估计、线性最小方差估计、极大似然估计,并讨论了它们在AR、MA、ARMA和ARIMA模型中的应用。在估计前,需要计算样本均值、方差、自相关函数和功率谱。不同估计方法各有特点,如最小二乘法在大数据量时与相关矩估计效果相当,而极大似然估计则寻求使数据发生概率最大的参数。
摘要由CSDN通过智能技术生成

   在选定某种模型如ARMAARMAARIMA模型后,需要对模型的未知参数进行估计,估计的方法与数理统计中的参数点估计方法类似,有相关矩估计、最小二乘估计、最小方差估计、极大似然估计、最大熵估计等。

    在对参数进行估计前,需要知道各种常见统计量的计算方法。由于自相关函数、偏自相关函数、功率谱密度、格林函数等作为系统的特征函数,在给出大量的数据(样本)之后,如果得到这些特征函数的估计呢?

1)样本均值、样本方差、样本自相关函数、样本功率谱的计算

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值