时间序列分析
文章平均质量分 51
数学VS游戏开发
数学人从事游戏开发。
展开
-
时间序列分析之五:几种建模方法
时间序列建模包含以下几个部分,识别模型类型、估计模型参数、模型定阶等。 (1)模型识别 针对平稳的数据,可采用自相关系数和偏相关系数的形态来识别模型类别。截断、拖尾现象。可通过统计判别或经验来判别是否截断和拖尾。针对ARMA模型的定阶,可采用p,q任选的方式,也可以使得q=p-1限制。 针对季节性数据,可采用ARIMA模型,可通过试探或实际背原创 2013-12-02 23:57:35 · 3768 阅读 · 0 评论 -
时间序列分析之六:应用
时间序列模型可以用于预测、谱估计、自适应滤波等问题。(1)预测预测是使未来值的预测误差尽可能小,可以对平稳和趋势数据进行预测。 (2)谱估计良好的谱估计需要小的分辨误差和小的随机误差,这些误差都来自有限的量测时间。有经典谱估计(傅立叶谱估计法)和现代谱估计(利用时间序列模型进行估计) 傅立叶谱的问题:直接法:对样本傅立叶不一定存在和适原创 2013-12-02 23:58:05 · 1314 阅读 · 0 评论 -
时间序列分析之二:基本模型
时间序列建模的基本步骤如下步骤一:对数据进行平稳性和高斯性检验步骤二:如果非平稳和非高斯,需要进行平稳化处理步骤三:根据自相关函数、偏相关函数、功率谱密度的特点选择特定的时间序列模型步骤四:模型阶数的确定步骤五:模型参数的确定步骤六:模型正确性的检验 时间序列模型建立在随机序列平稳性和白噪声激励的假设之上,这是因为实原创 2013-12-02 23:54:27 · 2331 阅读 · 0 评论 -
时间序列分析之一:数据预处理
时间序列分析拾运用概率与统计的理论与方法分析随机数据序列,并建立数学模型、定阶和参数估计的学科,它主要应用在预测、控制、滤波、金融(如股票价格)等方面。 我们常见的时间序列模型是状态平稳、正态分布、独立噪声(白噪声)、无趋势的。为了保证模型的精确性,需要对数据进行平稳、正态、独立、趋势的检验,在通过检验的前提下才可进行后续处理,如果不满足上述条件,还需进行预处理,使其平稳、正态、独立、无原创 2013-12-02 23:50:53 · 8860 阅读 · 0 评论 -
时间序列分析之三:参数估计
在选定某种模型如AR、MA、ARMA、ARIMA模型后,需要对模型的未知参数进行估计,估计的方法与数理统计中的参数点估计方法类似,有相关矩估计、最小二乘估计、最小方差估计、极大似然估计、最大熵估计等。 在对参数进行估计前,需要知道各种常见统计量的计算方法。由于自相关函数、偏自相关函数、功率谱密度、格林函数等作为系统的特征函数,在给出大量的数据(样本)之后,如果得到这些特征函数的估计呢原创 2013-12-02 23:56:09 · 3688 阅读 · 0 评论 -
时间序列分析之四:模型定阶
模型定阶方法主要有偏相关定阶法、白噪声检验定阶法、F检验定阶法、准则函数定阶法、信息熵定阶法等。(1)偏相关定阶法此定阶法主要是利用特定模型的自相关函数或偏相关函数的截断和拖尾性质来确定合适的模型和阶数,粗略定阶。核心是自相关函数和偏相关函数的计算。 (2)白噪声检验平稳序列模型可以看成是将白噪声转换为描述的序列。故衡量模型是否适合,就看拟合的结果的误差原创 2013-12-02 23:56:48 · 6046 阅读 · 0 评论