学习笔记-1-Review of Linear Algebra-2-Matrix

本文探讨了矩阵在机器学习中的作用,解释了矩阵作为数据表示的常见形式,如记录对象特征、图像数据和线性系统动力学的表示。矩阵可以视为数据的矩形或方形阵列,并涉及线性变换。讨论了矩阵分解在处理大型数据集中的重要性。
摘要由CSDN通过智能技术生成

详细内容请关注微信公众号:运筹优化与数据科学

ID: pomelo_tree_opt


Outline

  1. Matrix的基本认识

  2. Matrix与Data

  3. Matrix的操作

  4. Matrix的性质

--------------------------------

1. Matrix definition

我们之所以会分别从行向量和列向量的角度去看待矩阵A,是因为行向量和列向量有不同的几何意义。

==================================

2. Matrix与data

Matrix和data之间的关系,matrix用来表示data的时候,

  • 是rectangular matrix多,还是square matrix多?

  • 各有什么特点?

  • 各有什么好处?

  • 要怎么处理它们?

取决于具体应用。

---------------------------------------------

What’s the role of matrices in machine learning?

矩阵从data的角度,从machine learning的角度来理解,到底代表了什么东西?

----------------------------------------

Example 1 – record of objects in terms of features/characteristics specifying the objects.

1个record可以看作是1个vector, 很多record自然而言就是matrix的形式,不管是横着摆放,还是竖着摆放,而且大概率是个长的矩阵。

----------------------------------------

Example 2 – image of data

图片只要是画格子来表示,就是矩阵形式。

一张照片,比如黑白的,写成100*100,或者100*120的方格,如果是黑色的,就写1,否则就写0. 加颜色也可以,无非就是格子里的数字不同而已,彩色照片,最常见的256种颜色。这样一张照片就是一个矩阵。长的也可以,方的也可以。所以image data是最常常变成一个matrix来处理

声音数据也可以,例如电波数据进来,上上下下,把电波切成一截一截的,每一点都有个频率,结果形式就是矩阵形式。

所以,我们看到的、听到的,通通都可以变成matrix.

----------------------------------------

Example 3 – dynamics of a linear system

一个线性系统,一个系统就类似一个黑盒子,给定一组输入,得到一个输出,很多输入和很多输出之间就存在一个linear mapping, 线性映射或线性转变,比如把一个m维的vector转变成一个n维的vector, 需要一个m*n的变化(线性变换),这个线性变换就是一个matrix. 从这个角度看,matrix代表了linear transformation.

linear transformation

  • 第一条是在说,两个向量先组合再线性转变,等价于两个向量先分别线性转变再组合起来。

  • 第二条,矩阵的行列式不为0,意味着可逆,invertible,也就等价于linearly independent, 这种情况下从xy的线性转变是一对一的,同构的同质的。其实是在说在一定条件下,这个转变,可以变过去,还可以变回来。

  • 第三条,从向量x到向量y的线性转变,如果进一步分解的话,本质上是先对x做旋转,然后做伸缩,之后再做一个旋转。

---------------------------

Linear transformation的demo case

纠正一下,理解错了,这个feature map的映射操作,只是transform, 不是linear的,所以不是矩阵操作

========================

结论:

(1) 从静态的视角来看,一大堆数据排列起来,就是矩阵。尤其是像表格化的数据,一行一列的,是典型的matrix. 另外,figure的东西天生就适合用matrix来存储,在figure上画格子就行,甚至可以细到pixel的颗粒度,每个point上一个数字代表颜色即可。

(2) 从动态的角度来看,矩阵代表着linear transformation, 线性变化。给一个input,然后经过矩阵A的变化得到一个output. 而且这个变化的过程其实包含了3个步骤,先旋转,再伸缩,再旋转,这就意味着一个矩阵A其实包含三个操作。换句话说,就是说A可以分解成三个东西。

(3)矩阵的分解。一大堆数据写成一个矩阵,有可能这个矩阵超级大,像照片那种的按照像素来写,比如1000*5000。简单来说,数据越多,可能矩阵越大,存储和处理起来就越费劲。矩阵分解就是把这个大矩阵分解成一些小的、简单的矩阵,这样无论是存储还是处理都会容易很多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值