01背包、完全背包、多重背包 总结小讲

首先说下动态规划,动态规划这东西就和递归一样,只能找局部关系,若想全部列出来,是很难的,比如汉诺塔。你可以说先把除最后一层的其他所有层都移动到2,再把最后一层移动到3,最后再把其余的从2移动到3,这是一个直观的关系,但是想列举出来是很难的,也许当层数n=3时还可以模拟下,再大一些就不可能了,所以,诸如递归,动态规划之类的,不能细想,只能找局部关系。

DP最关键的就是状态,在DP时用到的数组时,也就是存储的每个状态的最优值,也就是记忆化搜索。

要了解背包,首先得清楚动态规划:

动态规划算法可分解成从先到后的4个步骤:

1. 描述一个最优解的结构;

2. 递归地定义最优解的值;

3. 以“自底向上”的方式计算最优解的值;

4. 从已计算的信息中构建出最优解的路径。

其中步骤1~3是动态规划求解问题的基础。如果题目只要求最优解的值,则步骤4可以省略。


背包的基本模型就是给你一个容量为V的背包

在一定的限制条件下放进最多(最少?)价值的东西

当前状态→ 以前状态


首先我们把三种情况放在一起来看:

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

比较三个题目,会发现不同点在于每种背包的数量,01背包是每种只有一件,完全背包是每种无限件,而多重背包是每种有限件。



1、01背包

01背包(ZeroOnePack): 有N件物品和一个容量为V的背包。(每种物品均只有一件)第i件物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使价值总和最大。

这是最基础的背包问题,特点是:每种物品仅有一件,可以选择放或不放。

用子问题定义状态:即f[i][v]表示前i件物品恰放入一个容量为v的背包可以获得的最大价值。则其状态转移方程是:

f[i][v]=max{f[i-1][v],f[i-1][v-c[i]]+w[i]}

把这个过程理解下:在前i件物品放进容量v的背包时,

它有两种情况:

第一种是第i件不放进去,这时所得价值为:f[i-1][v]

第二种是第i件放进去,这时所得价值为:f[i-1][v-c[i]]+w[i]

(第二种是什么意思?就是如果第i件放进去,那么在容量v-c[i]里就要放进前i-1件物品)

最后比较第一种与第二种所得价值的大小,哪种相对大,f[i][v]的值就是哪种!!(这是基础,要理解!)


这里是用二维数组存储的,可以把空间优化,用一维数组存储。

用f[0..v]表示,f[v]表示把前i件物品放入容量为v的背包里得到的价值。把i从1~n(n件)循环后,最后f[v]表示所求最大值!!


这里f[v]就相当于二位数组的f[i][v]。那么,如何得到f[i-1][v]和f[i-1][v-c[i]]+w[i]?(重点!思考)

首先要知道,我们是通过i从1到n的循环来依次表示前i件物品存入的状态。即:for i=1..N
现在思考如何能在是f[v]表示当前状态是容量为v的背包所得价值,而又使f[v]和f[v-c[i]]+w[i]标签前一状态的价值?

逆序!

这就是关键!

for i=1..N
   for v=V..0 (V..v[i])
        f[v]=max{f[v],f[v-c[i]]+w[i]};

分析上面的代码:当内循环是逆序时,就可以保证后一个f[v]和f[v-c[i]]+w[i]是前一状态的!
这里给大家一组测试数据:

测试数据:
10,3
3,4
4,5
5,6

 

 这个图表画得很好,借此来分析:

C[v]从物品i=1开始,循环到物品3,期间,每次逆序得到容量v在前i件物品时可以得到的最大值。(请在草稿纸上自己画一画)

分析:

 

 具体根据上面的解释以及我给出的代码分析。这题很基础,看懂上面的知识应该就会做了。



2、完全背包

完全背包(CompletePack): 有N种物品和一个容量为V的背包,每种物品都有无限件可用。第i种物品的费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

完全背包按其思路仍然可以用一个二维数组来写出,且状态转移方程是:

f[i][v]=max{f[i-1][v-k*c[i]]+k*w[i]|0<=k*c[i]<=v}

但同样可以转换成一维数组来表示:

伪代码如下:

for i=1..N
    for v=0..V (v[i]..V)
        f[v]=max{f[v],f[v-c[i]]+w[i]}
顺序!

想必大家看出了和01背包的区别,这里的内循环是顺序的,而01背包是逆序的。
现在关键的是考虑:为何完全背包可以这么写?
在次我们先来回忆下,01背包逆序的原因?是为了是max中的两项是前一状态值,这就对了。
那么这里,我们顺序写,这里的max中的两项当然就是当前状态的值了,为何?
因为每种背包都是无限的。当我们把i从1到N循环时,f[v]表示容量为v在前i种背包时所得的价值,这里我们要添加的不是前一个背包,而是当前背包。所以我们要考虑的当然是当前状态。

(分析代码也是学习算法的一种途径,有时并不一定要看算法分析,结合题目反而更容易理解。)



3、【多重背包】

多重背包(MultiplePack): 有N种物品和一个容量为V的背包。第i种物品最多有n[i]件可用,每件费用是c[i],价值是w[i]。求解将哪些物品装入背包可使这些物品的费用总和不超过背包容量,且价值总和最大。

(1)基本算法 :这题目和完全背包问题很类似。基本的方程只需将完全背包问题的方程略微一改即可,因为对于第i种物品有n[i]+1种策略:取0件,取1件……取 n[i]件。令f[i][v]表示前i种物品恰放入一个容量为v的背包的最大权值,则有状态转移方程:

f[i][v]=max{f[i-1][v-k*c[i]]+ k*w[i]|0<=k<=n[i]}。复杂度是O(V*∑n[i])。


(2)转化为01背包问题 
另一种好想好写的基本方法是转化为01背包求解:把第i种物品换成n[i]件01背包中的物品,则得到了物品数为∑n[i]的01背包问题,直接求解,复杂度仍然是O(V*∑n[i])。

但是我们期望将它转化为01背包问题之后能够像完全背包一样降低复杂度。仍然考虑二进制的思想,我们考虑把第i种物品换成若干件物品,使得原问题中第i种物品可取的每种策略——取0..n[i]件——均能等价于取若干件代换以后的物品。另外,取超过n[i]件的策略必不能出现。 

方法是:将第i种物品分成若干件物品,其中每件物品有一个系数,这件物品的费用和价值均是原来的费用和价值乘以这个系数。使这些系数分别为 1,2,4,...,2^(k-1),n[i]-2^k+1,且k是满足n[i]-2^k+1>0的最大整数。例如,如果n[i]为13,就将这种物品分成系数分别为1,2,4,6的四件物品。 

分成的这几件物品的系数和为n[i],表明不可能取多于n[i]件的第i种物品。另外这种方法也能保证对于0..n[i]间的每一个整数,均可以用若干个系数的和表示,这个证明可以分0..2^k-1和2^k..n[i]两段来分别讨论得出,并不难,希望你自己思考尝试一下。 

这样就将第i种物品分成了O(log n[i])种物品,将原问题转化为了复杂度为O(V*∑log n[i])的01背包问题,是很大的改进。 

(3)O(VN)的算法 
多重背包问题同样有O(VN)的算法。这个算法基于基本算法的状态转移方程,但应用单调队列的方法可以使每个状态的值可以以均摊O(1)的时间求解。


多重背包小结:在这里,我们将一个算法的复杂度由O(V*∑n[i])改进到O(V*∑log n[i]),还知道它有O(VN)算法。要特别注意“拆分物品”的思想和方法。





-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------




01 背包

有n 种不同的物品,每个物品有两个属性,size 体积,value 价值,现在给一个容量为 w 的背包,问最多可带走多少价值的物品。 

int f[w+1];   //f[x] 表示背包容量为x 时的最大价值
for (int i=0; i<n; i++)
    for (int j=w; j>=size[i]; j--)
        f[j] = max(f[j], f[j-size[i]]+value[i]);

完全背包 

如果物品不计件数,就是每个物品不只一件的话,稍微改下即可 

for (int i=0; i<n; i++)
    for (int j=size[i]; j<=w; j++)
        f[j] = max(f[j], f[j-size[i]]+value[i]);

f[w] 即为所求 

初始化分两种情况:

1、如果背包要求正好装满则初始化 f[0] = 0, f[1~w] = -INF; 

2、如果不需要正好装满 f[0~v] = 0;  


举例:

01背包

V=10,N=3,c[]={3,4,5}, w={4,5,6}

(1)背包不一定装满

      计算顺序是:从右往左,自上而下:因为每个物品只能放一次,前面的体积小的会影响体积大的

(2)背包刚好装满    

      计算顺序是:从右往左,自上而下。注意初始值,其中-inf表示负无穷

完全背包

V=10,N=3,c[]={3,4,5}, w={4,5,6}

(1)背包不一定装满

计算顺序是:从左往右,自上而下:  每个物品可以放多次,前面的会影响后面的

(2)背包刚好装满

计算顺序是:从左往右,自上而下。注意初始值,其中-inf表示负无穷


多重背包:  
         多重背包问题要求很简单,就是每件物品给出确定的件数,求可得到的最大价值  
         多重背包转换成 01 背包问题就是多了个初始化,把它的件数C 用二进制分解成若干个件数的集合,这里面数字可以组合成任意小于等于C的件数,而且不会重复,之所以叫二进制分解,是因为这样分解可以用数字的二进制形式来解释  
       比如:7的二进制 7 = 111 它可以分解成 001 010 100 这三个数可以组合成任意小于等于7 的数,而且每种组合都会得到不同的数  
       15 = 1111 可分解成 0001  0010  0100  1000 四个数字  
        如果13 = 1101 则分解为 0001 0010 0100 0110 前三个数字可以组合成  7以内任意一个数,即1、2、4可以组合为1——7内所有的数,加上 0110 = 6 可以组合成任意一个大于6 小于等于13的数,比如12,可以让前面贡献6且后面也贡献6就行了。虽然有重复但总是能把 13 以内所有的数都考虑到了,基于这种思想去把多件物品转换为,多种一件物品,就可用01 背包求解了。  
       看代码: 

int n;  //输入有多少种物品
int c;  //每种物品有多少件
int v;  //每种物品的价值
int s;  //每种物品的尺寸
int count = 0; //分解后可得到多少种物品
int value[MAX]; //用来保存分解后的物品价值
int size[MAX];  //用来保存分解后物品体积

scanf("%d", &n);    //先输入有多少种物品,接下来对每种物品进行分解

while (n--)     //接下来输入n中这个物品
{
    scanf("%d%d%d", &c, &s, &v);  //输入每种物品的数目和价值
    for (int k=1; k<=c; k<<=1)   //<<右移 相当于乘二
    {
        value[count] = k*v;
        size[count++] = k*s;
        c -= k;
    }
    if (c > 0)
    {
        value[count] = c*v;
        size[count++] = c*s;
    }
}

定理:一个正整数n可以被分解成1,2,4,…,2^(k-1),n-2^k+1(k是满足n-2^k+1>0的最大整数)的形式,且1~n之内的所有整数均可以唯一表示成1,2,4,…,2^(k-1),n-2^k+1中某几个数的和的形式。

证明如下:

(1) 数列1,2,4,…,2^(k-1),n-2^k+1中所有元素的和为n,所以若干元素的和的范围为:[1, n];

(2)如果正整数t<= 2^k – 1,则t一定能用1,2,4,…,2^(k-1)中某几个数的和表示,这个很容易证明:我们把t的二进制表示写出来,很明显,t可以表示成n=a0*2^0+a1*2^1+…+ak*2^(k-1),其中ak=0或者1,表示t的第ak位二进制数为0或者1.

(3)如果t>=2^k,设s=n-2^k+1,则t-s<=2^k-1,因而t-s可以表示成1,2,4,…,2^(k-1)中某几个数的和的形式,进而t可以表示成1,2,4,…,2^(k-1),s中某几个数的和(加数中一定含有s)的形式。

(证毕!)


现在用count 代替 n 就和01 背包问题完全一样了 , 杭电2191题解:此为多重背包用01和完全背包:

#include<stdio.h>
#include<string.h>
int dp[102];
int p[102],h[102],c[102];
int n,m;
void comback(int v,int w)//经费,重量。完全背包;
{
    for(int i=v; i<=n; i++)
        if(dp[i]<dp[i-v]+w)
            dp[i]=dp[i-v]+w;
}
void oneback(int v,int w)//经费,重量;01背包;
{
    for(int i=n; i>=v; i--)
        if(dp[i]<dp[i-v]+w)
            dp[i]=dp[i-v]+w;
}
int main()
{
    int ncase,i,j,k;
    scanf("%d",&ncase);
    while(ncase--)
    {
        memset(dp,0,sizeof(dp));
        scanf("%d%d",&n,&m);//经费,种类;
        for(i=1; i<=m; i++)
        {
            scanf("%d%d%d",&p[i],&h[i],&c[i]);//价值,重量,数量;
            if(p[i]*c[i]>=n) comback(p[i],h[i]);
            else
            {
                for(j=1; j<c[i]; j<<1)
                {
                    oneback(j*p[i],j*h[i]);
                    c[i]=c[i]-j;
                }
                oneback(p[i]*c[i],h[i]*c[i]);
            }
        }
        printf("%d\n",dp[n]);
    }
    return 0;
}


只是用01背包,用二进制优化:

#include <iostream>
using namespace std;
int main()
{
    int nCase,Limit,nKind,i,j,k,  v[111],w[111],c[111],dp[111];
    //v[]存价值,w[]存尺寸,c[]存件数
    //在本题中,价值是米的重量,尺寸是米的价格
    int count,Value[1111],size[1111];
    //count存储分解完后的物品总数
    //Value存储分解完后每件物品的价值
    //size存储分解完后每件物品的尺寸
    cin>>nCase;
    while(nCase--)
    {
        count=0;
        cin>>Limit>>nKind;
        for(i=0; i<nKind; i++)
        {
            cin>>w[i]>>v[i]>>c[i];
            //对该种类的c[i]件物品进行二进制分解
            for(j=1; j<=c[i]; j<<=1)
            {
                //<<右移1位,相当于乘2
                Value[count]=j*v[i];
                size[count++]=j*w[i];
                c[i]-=j;
            }
            if(c[i]>0)
            {
                Value[count]=c[i]*v[i];
                size[count++]=c[i]*w[i];
            }
        }
        //经过上面对每一种物品的分解,
        //现在Value[]存的就是分解后的物品价值
        //size[]存的就是分解后的物品尺寸
        //count就相当于原来的n
        //下面就直接用01背包算法来解
        memset(dp,0,sizeof(dp));
        for(i=0; i<count; i++)
            for(j=Limit; j>=size[i]; j--)
                if(dp[j]<dp[j-size[i]]+Value[i])
                    dp[j]=dp[j-size[i]]+Value[i];

        cout<<dp[Limit]<<endl;
    }
    return 0;
}


未优化的:

#include<iostream>
#include<cstdio>
#include<cstring>
using namespace std;

int Value[105];
int Cost[105];
int Bag[105];
int dp[105];

int main()
{
    int C,m,n;
    scanf("%d",&C);
    while(C--)
    {
        scanf("%d%d",&n,&m);
        for(int i = 1; i <= m; i++)
            scanf("%d%d%d",&Cost[i],&Value[i],&Bag[i]);
        memset(dp,0,sizeof(dp));
        for(int i=1; i<= m; i++)
            for(int j=1; j<=Bag[i]; j++)
                for(int k=n; k>=Cost[i]; k--)
                    dp[k]=max(dp[k], dp[k-Cost[i]]+Value[i]);
        printf("%d\n",dp[n]);
    }
    return 0;
}



做完背包后,自己总结了一下各种背包问题以及需要注意的地方,以下是在总结的过程中参考的文章。

参考:

http://www.cnblogs.com/tanky_woo/archive/2010/07/31/1789621.html

http://blog.csdn.net/lyhvoyage/article/details/8545852

http://www.cnblogs.com/devil-91/archive/2012/05/16/2502710.html

背包九讲




  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值