01背包
每件物品只有一个
状态表示:
f
[
i
]
[
j
]
f[i][j]
f[i][j] 表示所有只从前
i
i
i 个物品中选 且总体积不超过
j
j
j 的选法的价值最大值
朴素算法
分为两种情况:①不选第i个物品 f [ i − 1 ] [ j ] f[i-1][j] f[i−1][j]
②选第i个物品 状态方程可以由 f [ i − 1 ] [ j − v ] + w f[i-1][j-v] + w f[i−1][j−v]+w得到
f [ i − 1 ] [ j − v ] + w f[i-1][j-v] + w f[i−1][j−v]+w表示前 i − 1 i - 1 i−1个物品取总体积不超过 j − v j - v j−v的最大价值加上第 i i i个物品的价值( v , w v,w v,w)分别表示第 i i i个物品的体积和价值
for (int i = 1;i <= n;++i) {
for (int j = 0;j <= m;++j) {
f[i][j] = f[i - 1][j];
if (j >= v[i])f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
}
}
cout << f[n][m] << endl;
优化成一维
因为对第 i i i维的判断只用到了 i − 1 i- 1 i−1维,所以可以用滚动数组的思想 由朴素的算法可知 i i i维都是由 i − 1 i-1 i−1维转移过来的 如果对 j j j从小到大枚举 计算到 f [ j ] f[j] f[j]时 此时的 f [ j − v [ i ] ] f[j-v[i]] f[j−v[i]]小于 f [ j ] f[j] f[j]已经被更新到第 i i i维 所以要对 j j j从大到小枚举
for (int i = 1;i <= n;++i) {
for (int j = m;j >= v[i];--j) {
f[j] = max(f[j], f[j - v[i]] + w[i]);
}
}