01背包原理

01背包

每件物品只有一个
状态表示: f [ i ] [ j ] f[i][j] f[i][j] 表示所有只从前 i i i 个物品中选 且总体积不超过 j j j 的选法的价值最大值

朴素算法

分为两种情况:①不选第i个物品 f [ i − 1 ] [ j ] f[i-1][j] f[i1][j]

​ ②选第i个物品 状态方程可以由 f [ i − 1 ] [ j − v ] + w f[i-1][j-v] + w f[i1][jv]+w得到

f [ i − 1 ] [ j − v ] + w f[i-1][j-v] + w f[i1][jv]+w表示前 i − 1 i - 1 i1个物品取总体积不超过 j − v j - v jv的最大价值加上第 i i i个物品的价值( v , w v,w v,w)分别表示第 i i i个物品的体积和价值

for (int i = 1;i <= n;++i) {
	for (int j = 0;j <= m;++j) {
		f[i][j] = f[i - 1][j];
		if (j >= v[i])f[i][j] = max(f[i][j], f[i - 1][j - v[i]] + w[i]);
	}
}
cout << f[n][m] << endl;

优化成一维

因为对第 i i i维的判断只用到了 i − 1 i- 1 i1维,所以可以用滚动数组的思想 由朴素的算法可知 i i i维都是由 i − 1 i-1 i1维转移过来的 如果对 j j j从小到大枚举 计算到 f [ j ] f[j] f[j]时 此时的 f [ j − v [ i ] ] f[j-v[i]] f[jv[i]]小于 f [ j ] f[j] f[j]已经被更新到第 i i i维 所以要对 j j j从大到小枚举

for (int i = 1;i <= n;++i) {
	for (int j = m;j >= v[i];--j) {
		f[j] = max(f[j], f[j - v[i]] + w[i]);
	}
}
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

zzqwtc

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值