拉格朗日乘子法 和对偶问题

本文详细介绍了拉格朗日乘数法及其在解决约束优化问题中的应用,特别是如何通过引入松弛变量将不等式约束转化为等式约束,进而利用KKT条件来解决更复杂的优化问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拉格朗日乘数法就是求条件极值转化为非条件极值

嗯哼哼  首先看下条件极值为一个等式的情况


将条件转化为


带入z 

就变成简单的一元函数求极值了


嗯哼

多变量也同样如此


现在看看不等式约束

嗯哼哼

重要的数学思想来了 

像条件极值转化为非条件极值

我们能不能将不等式约束转化为等式约束 然后就依样画葫芦了

嗯哼哼 引入松弛变量 

what 什么是松弛变量

比如X1<= 4 

定义松弛变量 X2 = 4 - X1 故约束X1<= 4 

X1 + X2 = 4且 X2 >= 0 完全等价

故原来的约束 X1 - 4<= 0

变成 X1 + X2 - 4 = 0

然后就和等式条件的拉格朗日乘子法一样

因为 X2要求大于零 又是一个新的不等式约束 故我们可以把变量写成 一个数的平方

栗子如下


引入松弛变量


然后对其求偏导


第五个是一个重要的条件

来说下 

什么是KKT条件

就是说满足一定条件后不等式约束下的 拉格朗日乘子法 

就可以完成对偶的变换

嗯哼哼  先来看看 不等式约束


其中 是不等式约束 

再来看不等式约束要满足什么条件 可以发生转换  为什么

当其满足以下条件是 就是所谓的KKT条件








故在满足的条件下 

可转化为其对偶问题



再说说 为什么受约束条件的求极值能能通过拉格朗日乘子式

嗯哼哼 拉格朗日这大牛YY了一个惩罚因子  使L()只能走在约束区内


通过改变使得其中 X暂看作常量,记作



一旦X 违反约束条件

 



其惩罚因子都会 


使得




对偶问题


就是看作常量 ,改变X的值使得函数最小



证明


而加上上述的KKT条件就是  强对偶问题了





拉格朗日乘子法用于处理含有等式/或不等式约束的最优化问题。当涉及到对偶问题时,通常是指原问题(Primal Problem)与其对应的对偶问题(Dual Problem)。在某些情况下,直接求解原问题是困难的,但是可以通过转换成其对偶形式来简化解决问题的过程。 对于一个标准的形式化为最小化的原问题: \[ \min_x f(x) \] 受制于 \[ g_i(x) \leq 0, i = 1,...,m \] \[ h_j(x) = 0, j = 1,...,p \] 可以构造拉格朗日函数如下: \[ L(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m}\lambda_ig_i(x)+\sum_{j=1}^{p}\nu_jh_j(x), \] 其中 $\lambda_i$ $\nu_j$ 分别是对不等式等式约束引入的拉格兰日乘子对偶问题则是最大化由拉格朗日函数定义的对偶函数 $g(\lambda,\nu)$ 关于 $(\lambda,\nu)$ 的值,即: \[ \max_{\lambda,\nu} g(\lambda,\nu)=\inf_xL(x,\lambda,\nu). \] 下面给出一个简单的计算题示例及其解释: **题目** 考虑下列非线性规划问题: \[ \text{Minimize }f(x,y) = x^2+y^2 \] subject to: \[ xy - 1 = 0. \] **解答** 构建拉格朗日函数: \[ L(x,y,\lambda) = x^2 + y^2 + \lambda(xy-1). \] 为了找到最优解,需要满足KKT条件,包括梯度等于零以及互补松弛条件。因此我们设置偏导数等于零以寻找驻点: \[ \frac{\partial L}{\partial x} = 2x+\lambda y = 0, \] \[ \frac{\partial L}{\partial y} = 2y+\lambda x = 0, \] \[ \frac{\partial L}{\partial \lambda} = xy - 1 = 0. \] 从上面两个方程式中我们可以得到关系 \(xy=-\lambda\) 并结合第三个方程得出 \(-\lambda=1\) 即得 \(\lambda=-1\)。再利用这个结果去解联立方程组就可以获得 \(x\) \(y\) 的具体数值了。 此例子展示了如何应用拉格朗日乘子法建立对偶问题,并通过求解相应的系统方程来确定最优解的方法。
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值