拉格朗日乘子法和对偶问题

本文介绍了拉格朗日乘子法在解决优化问题中的作用,包括无约束优化、等式约束优化和不等式约束条件下的应用。通过拉格朗日函数,可以转化并求解约束优化问题。此外,还讨论了对偶问题在优化问题求解中的重要性,以及如何利用对偶问题简化原问题的求解过程。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

拉格朗日乘子法 是一种用于求解优化函数的方法。

无约束优化

对于无约束优化,其实我们不必使用拉格朗日乘子法就可以对其进行计算。
比如 f ( x ) = x 2 f(x)=x^2 f(x)=x2,求解 m i n f ( x ) min f(x) minf(x) 。对于无约束优化我们直接使用函数的导数就可以求取函数的最大值或者最小值。

等式约束优化

等式约束优化优化的解决方法有两种:

  • 通过消元法,将约束条件转换到 f ( x ) f(x) f(x) 中,形成无约束优化。
  • 通过拉格朗日法进行求解:
    F ( x = 0 ) F(x=0) F(x=0) 且条件为 h k ( x ) = 0 h_k(x)=0 hk(x)=0,则拉格朗日算法的步骤如下:
    首先定义拉格朗日函数F(x):
    在这里插入图片描述
    然后解变量的偏导方程:
    在这里插入图片描述
    如果有 i 个约束条件,就应该有 i+1 个方程。求出的方程组的解就可能是最优化值(高等数学中提到的极值),将结果带回原方程验证就可得到解。

例子1:
例如,给定一个椭球:
x 2 a 2 +

拉格朗日乘子法用于处理含有等式/或不等式约束的最优化问题。当涉及到对偶问题时,通常是指原问题(Primal Problem)与其对应的对偶问题(Dual Problem)。在某些情况下,直接求解原问题是困难的,但是可以通过转换成其对偶形式来简化解决问题的过程。 对于一个标准的形式化为最小化的原问题: \[ \min_x f(x) \] 受制于 \[ g_i(x) \leq 0, i = 1,...,m \] \[ h_j(x) = 0, j = 1,...,p \] 可以构造拉格朗日函数如下: \[ L(x,\lambda,\nu) = f(x) + \sum_{i=1}^{m}\lambda_ig_i(x)+\sum_{j=1}^{p}\nu_jh_j(x), \] 其中 $\lambda_i$ $\nu_j$ 分别是对不等式等式约束引入的拉格兰日乘子。 对偶问题则是最大化由拉格朗日函数定义的对偶函数 $g(\lambda,\nu)$ 关于 $(\lambda,\nu)$ 的值,即: \[ \max_{\lambda,\nu} g(\lambda,\nu)=\inf_xL(x,\lambda,\nu). \] 下面给出一个简单的计算题示例及其解释: **题目** 考虑下列非线性规划问题: \[ \text{Minimize }f(x,y) = x^2+y^2 \] subject to: \[ xy - 1 = 0. \] **解答** 构建拉格朗日函数: \[ L(x,y,\lambda) = x^2 + y^2 + \lambda(xy-1). \] 为了找到最优解,需要满足KKT条件,包括梯度等于零以及互补松弛条件。因此我们设置偏导数等于零以寻找驻点: \[ \frac{\partial L}{\partial x} = 2x+\lambda y = 0, \] \[ \frac{\partial L}{\partial y} = 2y+\lambda x = 0, \] \[ \frac{\partial L}{\partial \lambda} = xy - 1 = 0. \] 从上面两个方程式中我们可以得到关系 \(xy=-\lambda\) 并结合第三个方程得出 \(-\lambda=1\) 即得 \(\lambda=-1\)。再利用这个结果去解联立方程组就可以获得 \(x\) \(y\) 的具体数值了。 此例子展示了如何应用拉格朗日乘子法建立对偶问题,并通过求解相应的系统方程来确定最优解的方法。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值