二分类
感知机
见文章《感知机》
对数几率回归
见文章《线性模型》
多分类
将多分类问题拆分为多个二分类问题,拆分的策略有:
* 一对一:新样本同时提交给N(N-1)/2个分类器,最终结果由投票产生
* 一对余:
* 多对多:
比较:
一对一需训练N(N-1)/2个分类器,而一对余只需训练N个分类器
但一对一每次只是用两个类的样例,而一对余每次要使用所有的样例。类别很多时,一对一的时间开销更小。
因此预测性能两者差不多。
见文章《感知机》
见文章《线性模型》
将多分类问题拆分为多个二分类问题,拆分的策略有:
* 一对一:新样本同时提交给N(N-1)/2个分类器,最终结果由投票产生
* 一对余:
* 多对多:
比较:
一对一需训练N(N-1)/2个分类器,而一对余只需训练N个分类器
但一对一每次只是用两个类的样例,而一对余每次要使用所有的样例。类别很多时,一对一的时间开销更小。
因此预测性能两者差不多。