分类模型概述

二分类

感知机

见文章《感知机》

对数几率回归

见文章《线性模型》

多分类

将多分类问题拆分为多个二分类问题,拆分的策略有:
* 一对一:新样本同时提交给N(N-1)/2个分类器,最终结果由投票产生
* 一对余:
* 多对多:

比较:
一对一需训练N(N-1)/2个分类器,而一对余只需训练N个分类器
但一对一每次只是用两个类的样例,而一对余每次要使用所有的样例。类别很多时,一对一的时间开销更小。
因此预测性能两者差不多。

类别不平衡问题的解决

再缩放(阈值移动):也是代价敏感学习的基础

欠采样(下采样)

过采样(上采样)

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值