二叉树是一种递归定义的数据结构,自然而然地其算法大多也都采用递归的形式。二叉树的基础算法包括且不限于:
(1)二叉树的建立
(2)二叉树的三种遍历
(3)二叉树各类结点数计算(度为2,1,0的个数)
(4)二叉树的高度
(5)二叉树的宽度
(6)二叉树的直径
(7)二叉树的公共祖先
(8)二叉树的两种遍历序列推出第三种序列
二叉树的这些算法使用的是相同的算法模板,本文将会依次介绍这几种算法的具体写法。
二叉树的二叉链表存储结构定义与基础算法模板:
typedef struct BiTNode{
char data;
struct BiTNode *lchild,*rchild;//左右孩子指针
} *BiTree;
void 函数名(BiTree T)/**< 树根 */
{
if(根为空指针)/**< 也可能返回0 */
return;
函数名(T->lchild);
函数名(T->rchild);
/**< 这里一般会有一些代码用于计算 */
}
(1)二叉树的建立
二叉树有三种常用的存储结构,分别是顺序存储结构(基于完全二叉树的性质)、二叉链表、静态二叉链表。三种结构都可以方便地通过父结点找到左孩子和右孩子结点。前两种结构教材上已给,且教材上已有通过先序序列建立二叉链表的算法,本文不做赘述。
静态二叉链表本质上是一个一维数组,用数组下标替代指针。
struct node/**< 静态二叉链表 */
{
char data;
int lchild,rchild;
}T[100005];
其实很少有题目会采用教材上先序序列的方式输入数据,大多数都是给出父子关系对:如下题目
19081 树上摘樱桃 “1 left 2 ” 表示1的左孩子是2,此时使用静态二叉链表是比较方便的。
10 9 1 left 2 1 right 3 2 left 4 2 right 5 3 right 6 6 left 7 6 right 8 8 left 9 8 right 10
当我们读入 1 left 2是,只需写上 T[1].lchild=2; 2 right 5 :T[2].rchild=5;
(2)二叉树的三种遍历
从递归的角度看,三种算法是完全相同的,或说这三种算法的访问路径是相同的,只是访问结点的时机不同。
void PreOrderTraverse( BiTree T) {/**< 前序遍历二叉树T的递归算法 */
if(T)
{
cout<<T->data;/**< 语句位置决定遍历方法 */
PreOrderTraverse(T->lchild);
PreOrderTraverse(T->rchild);
}
}
(3)二叉树各类结点数计算(度为2,1,0的个数)
在遍历的时候不要输出值,改为检查这个结点的度并计数。
int d2=0,d1=0,d0=0;
void nodeDegree(BiTree T)
{
if(T)
{
if(T->lchild&&T->rchild)
d2++;
else if(T->lchild==NULL&&T->rchild==NULL)
d0++;
else
d1++;
nodeDegree(T->lchild);
nodeDegree(T->rchild);
}
}
(4)二叉树的高度
左子树高度和右子树高度的最大值+1。
int getTreeHeight(BiTree T)
{
if(T==NULL)
return 0;
return 1+max(getTreeHeight(T->lchild),getTreeHeight(T->rchild));
}
(5)二叉树的宽度
树中每一层都有若干个结点,宽度指的是树中层结点最多的数量,这个题目和求第K层结点数量是类似的。一种方法是使用BFS算法来标记每个结点的层数。也可以用二分递归方法计算每个点层数,因为每个点层数是其父节点层数+1;
void getLevel(Bitree T,int level)/**< level是其父节点层数,初始调用时树根的父节点层数为0 */
{
if(T)
{
/**< 此处可以记录T的层数是level+1,用一个计数数组记录每层个数,求最大值 */
/**< 如果是求第k层个数问题,那么if(level+1==k) cnt++即可 */
getLevel(T->lchild,level+1);
getLevel(T->rchild,level+1);
}
}
(6)二叉树的直径
一棵二叉树的直径长度是任意两个结点路径长度中的最大值。这条路径可能穿过也可能不穿过根结点。算法实际上通过枚举以T为根的左右子树高度和即可得到,因为二叉树的路径必然经过两个点的最近公共祖先,如果想让路径最长,显然这两个点都应该是叶子。
int maxlen=0;
int getTreeHeight(BiTree T)
{
if(T==NULL)
return 0;/**< 在求二叉树高度函数中添加下面语句即可 */
maxlen=getTreeHeight(T->lchild)+getTreeHeight(T->rchild);
return 1+max(getTreeHeight(T->lchild),getTreeHeight(T->rchild));
}
(7)二叉树的最近公共祖先
感兴趣点击如下链接,内附各类题解。
(8)二叉树的两种遍历序列推出第三种序列
18724 二叉树的遍历运算
二叉树的三种遍历都可以通过递归实现。 如果我们知道一棵二叉树的先序和中序序列,可以用递归的方法求后序遍历序列。 输入格式 两行,第一行一个字符串,表示树的先序遍历,第二行一个字符串,表示树的中序遍历。树的结点一律用小写字母表示。 输出格式 一个字符串,树的后序序列。 输入样例 abcde bcade 输出样例 cbeda
先序或后序遍历可以确定以树根的位置,然后用中序确定左子树和右子树结点集合,这样问题就可以二分为左子树和右子树两个子问题,继续递归,注意递归结束条件不是l==r。
#include <iostream>
#include <cstdio>
#include <cstring>
using namespace std;
char x[1005],z[1005];
void hx(int l,int r,int l2,int r2)
{
if(l>r)
return;
int p=l2;
while(z[p]!=x[l]) /**< 在中序中找到树根x[l]的位置 */
p++;
hx(l+1,l+p-l2,l2,p-1);/**< 左子树 */
hx(l+p-l2+1,r,p+1,r2);/**< 右子树 */
cout<<x[l];
}
int main()
{
int n;
cin>>x>>z;
n=strlen(x);
hx(0,n-1,0,n-1);
return 0;
}