@author:wepon
@blog:http://blog.csdn.net/u012162613/article/details/42192293
在前一篇文章 主成分分析(PCA) 中,我基于python和numpy实现了PCA算法,主要是为了加深对算法的理解,算法的实现很粗糙,实际应用中我们一般调用成熟的包,本文就结束scikit-learn中PCA使用的方法和需要注意的细节,参考:sklearn.decomposition.PCA
1、函数原型及参数说明
- sklearn.decomposition.PCA(n_components=None, copy=True, whiten=False)
参数说明:
n_components:
意义:PCA算法中所要保留的主成分个数n,也即保留下来的特征个数n类型:int 或者 string,缺省时默认为None,所有成分被保留。赋值为int,比如n_components=1,将把原始数据降到一个维度。赋值为string,比如n_components='mle',将自动选取特征个数n,使得满足所要求的方差百分比。
copy:
类型:bool,True或者False,缺省时默认为True。意义:表示是否在运行算法时,将原始训练数据复制一份。若为True,则运行PCA算法后,原始训练数据的值不 会有任何改变,因为是在原始数据的副本上进行运算;若为False,则运行PCA算法后,原始训练数据的 值会改,因为是在原始数据上进行降维计算。
whiten:
类型:bool,缺省时默认为False
意义:白化,使得每个特征具有相同的方差。关于“白化”,可参考:Ufldl教程
2、PCA对象的属性
components_ :返回具有最大方差的成分。
explained_variance_ratio_:返回 所保留的n个成分各自的方差百分比。
n_components_:返回所保留的成分个数n。
mean_:
noise_variance_:
3、PCA对象的方法
- fit(X,y=None)
fit(X),表示用数据X来训练PCA模型。
函数返回值:调用fit方法的对象本身。比如pca.fit(X),表示用X对pca这个对象进行训练。
- fit_transform(X)
newX=pca.fit_transform(X),newX就是降维后的数据。
- inverse_transform()
- transform(X)
此外,还有get_covariance()、get_precision()、get_params(deep=True)、score(X, y=None)等方法,以后用到再补充吧。
4、example
以一组二维的数据data为例,data如下,一共12个样本(x,y),其实就是分布在直线y=x上的点,并且聚集在x=1、2、3、4上,各3个。
- >>> data
- array([[ 1. , 1. ],
- [ 0.9 , 0.95],
- [ 1.01, 1.03],
- [ 2. , 2. ],
- [ 2.03, 2.06],
- [ 1.98, 1.89],
- [ 3. , 3. ],
- [ 3.03, 3.05],
- [ 2.89, 3.1 ],
- [ 4. , 4. ],
- [ 4.06, 4.02],
- [ 3.97, 4.01]])
data这组数据,有两个特征,因为两个特征是近似相等的,所以用一个特征就能表示了,即可以降到一维。下面就来看看怎么用sklearn中的PCA算法包。
(1)n_components设置为1,copy默认为True,可以看到原始数据data并未改变,newData是一维的,并且明显地将原始数据分成了四类。
- >>> from sklearn.decomposition import PCA
- >>> pca=PCA(n_components=1)
- >>> newData=pca.fit_transform(data)
- >>> newData
- array([[-2.12015916],
- [-2.22617682],
- [-2.09185561],
- [-0.70594692],
- [-0.64227841],
- [-0.79795758],
- [ 0.70826533],
- [ 0.76485312],
- [ 0.70139695],
- [ 2.12247757],
- [ 2.17900746],
- [ 2.10837406]])
- >>> data
- array([[ 1. , 1. ],
- [ 0.9 , 0.95],
- [ 1.01, 1.03],
- [ 2. , 2. ],
- [ 2.03, 2.06],
- [ 1.98, 1.89],
- [ 3. , 3. ],
- [ 3.03, 3.05],
- [ 2.89, 3.1 ],
- [ 4. , 4. ],
- [ 4.06, 4.02],
- [ 3.97, 4.01]])
( 2)将copy设置为False,原始数据data将发生改变。
- >>> pca=PCA(n_components=1,copy=False)
- >>> newData=pca.fit_transform(data)
- >>> data
- array([[-1.48916667, -1.50916667],
- [-1.58916667, -1.55916667],
- [-1.47916667, -1.47916667],
- [-0.48916667, -0.50916667],
- [-0.45916667, -0.44916667],
- [-0.50916667, -0.61916667],
- [ 0.51083333, 0.49083333],
- [ 0.54083333, 0.54083333],
- [ 0.40083333, 0.59083333],
- [ 1.51083333, 1.49083333],
- [ 1.57083333, 1.51083333],
- [ 1.48083333, 1.50083333]])
(3)n_components设置为'mle',看看效果,自动降到了1维。
- >>> pca=PCA(n_components='mle')
- >>> newData=pca.fit_transform(data)
- >>> newData
- array([[-2.12015916],
- [-2.22617682],
- [-2.09185561],
- [-0.70594692],
- [-0.64227841],
- [-0.79795758],
- [ 0.70826533],
- [ 0.76485312],
- [ 0.70139695],
- [ 2.12247757],
- [ 2.17900746],
- [ 2.10837406]])
- >>> pca.n_components
- 1
- >>> pca.explained_variance_ratio_
- array([ 0.99910873])
- >>> pca.explained_variance_
- array([ 2.55427003])
- >>> pca.get_params
- <bound method PCA.get_params of PCA(copy=True, n_components=1, whiten=False)>
我们所训练的pca对象的n_components值为1,即保留1个特征,该特征的方差为2.55427003, 占所有特征的方差百分比为0.99910873,意味着几乎保留了所有的信息。get_params返回各个参数的值。
(5)对象的方法
- >>> newA=pca.transform(A)
- >>> pca.set_params(copy=False)
- PCA(copy=False, n_components=1, whiten=False)